J. L. Nôtre, C. G. Frost / Tetrahedron Letters 49 (2008) 6217–6219
6219
2. (a) Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004, 248, 2365; (b) Ajamian,
A.; Gleason, J. L. Angew. Chem., Int. Ed. 2004, 43, 3754; (c) Pelissier, H.
Tetrahedron 2006, 62, 2143; (d) Pelissier, H. Tetrahedron 2006, 62, 1619; (e)
Chapman, C. J.; Frost, C. G. Synthesis 2007, 1.
3. Guo, H. C.; Ma, J. A. Angew. Chem., Int. Ed. 2006, 45, 354 and references cited
therein.
An efficient catalytic 1,4-addition–bromination process could
be realised by switching from NFSI to N-bromosuccinimide (NBS)
as shown in Scheme 3. The 1,4-addition–bromination product 6a
was isolated as the sole product of the reaction (100% conversion,
86% isolated yield). Persistent attempts to achieve an efficient
catalytic 1,4-addition–fluorination process using arylzinc reagents
were not successful. A number of alternative strategies to prepare
‘halide-free’ organometallic donors were attempted (including
directed metallation and catalytic carbometallation) without
success. Low yields and mixtures of products thwarted the intro-
duction of fluorine in this manner.
Having established distinct conditions for an efficient catalytic
1,4-addition–iodination or 1,4-addition–bromination process, a
selection of arylzinc reagents (derived from the corresponding aryl
iodide or aryl bromide) was demonstrated to be effective (Scheme
4). In each case, the reactions proceeded to 100% conversion to fur-
nish a single product as judged by NMR analysis of the crude mate-
rial. The lower isolated yields of 5c and 5d result from elimination
processes during purification.
In conclusion, the product distribution in the addition of an
arylzinc derivative and halogen atom across an activated alkene
using rhodium catalysis is dictated by the presence of specific lith-
ium halide salts and an electrophilic halogen source. We have
established suitable conditions for the selective 1,4-addition–
iodination or 1,4-addition–bromination of dimethylitaconate in
high yield. Interestingly, it was possible to use this process to
ascertain if a commercial solution of arylzinc reagent had been pre-
pared from the aryl iodide or bromide from the product(s) of the
reaction with dimethylitaconate and NFSI.
4. Li, K. Y.; Alexakis, A. Tetrahedron Lett. 2005, 46, 5823.
5. (a) Arnold, L. A.; Naasz, R.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2002, 67,
7244; (b) Yoshida, K.; Ogasawara, M.; Hayashi, T. J. Am. Chem. Soc. 2002, 124,
10984; (c) Douelle, F.; Capes, A. S.; Greaney, M. F. Org. Lett. 2007, 9, 1931.
6. Kim, H. Y.; Lurain, A. E.; Garcia-Garcia, P.; Carroll, P. J.; Walsh, P. J. J. Am. Chem.
Soc. 2005, 127, 13138.
7. (a) Cauble, D. F.; Gipson, J. D.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 1110;
(b) Li, K. Y.; Alexakis, A. Tetrahedron Lett. 2005, 46, 8019; (c) Le Nôtre, J.; van
Mele, D.; Frost, C. G. Adv. Synth. Catal. 2007, 349, 432; (d) Blake, A. J.; Shannon,
J.; Stephens, J. C.; Woodward, S. Chem. Eur. J. 2007, 13, 2462.
8. (a) Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083; (b) Chapman, C.
J.; Frost, C. G. Adv. Synth. Catal. 2003, 345, 353; (c) Chapman, C. J.; Wadsworth,
K. J.; Frost, C. G. J. Organomet. Chem. 2003, 680, 206; (d) Wadsworth, K. J.; Wood,
F. K.; Chapman, C. J.; Frost, C. G. Synlett 2004, 11, 2022; (e) Navarre, L.; Darses,
S.; Genet, J.-P. Angew. Chem., Int. Ed. 2004, 43, 719; (f) Sibi, M. P.; Tadamidani,
H.; Patil, K. Org. Lett. 2005, 7, 2571; (g) Chapman, C. J.; Matsuno, A.; Frost, C. G.;
Willis, M. C. Chem. Commun. 2007, 38, 3903; (h) Frost, C. G.; Penrose, S. D.;
Lambshead, K.; Raithby, P. R.; Warren, J. E.; Gleave, R. Org. Lett. 2007, 9, 2119;
(i) Navarre, L.; Martinez, R.; Genet, J.-P.; Darses, S. J. Am. Chem. Soc. 2008, 130,
6159.
9. (a) Larock, R. C. Comprehensive Organic Transformations, 2nd ed.; VCH
Publishers Inc.: New York, 1999;
P 175; (b) France, S.; Weatherwax, A.;
Lectka, T. Eur. J. Org. Chem. 2005, 475; (c) Yang, D.; Yan, Y. L.; Lui, B. J. Org. Chem.
2002, 67, 7429; (d) Perseghini, M.; Massaccesi, M.; Liu, Y. Y.; Togni, A.
Tetrahedron 2006, 62, 7180.
10. For typical examples, see: (a) Takahashi, Y.; Daitoh, M.; Suzuki, M.; Abe, T.;
Masuda, M. J. Nat. Prod. 2002, 65, 395; (b) Brito, I.; Cueto, M.; Diaz-Marrero, A.
R.; Darias, J.; Martin, A. S. J. Nat. Prod. 2002, 65, 946.
11. (a) Ibrahim, H.; Togni, A. Chem. Commun. 2004, 1147; (b) Bobbio, C.;
Gouverneur, V. Org. Biomol. Chem. 2006, 2065.
12. (a) Kukhar, V. P.; Soloshonok, V. A. Fluorine-Containing Amino Acids, Synthesis
and Properties; John Wiley & Sons: Chichester, 1995; (b) Filler, R.; Kobayashi, Y.
Biomedical Aspects of Fluorine Chemistry; Kodansha/Elsevier Biomedical Press:
New York, 1982; (c) Banks, R. E. J. Fluorine Chem. 1998, 87, 1; (d) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
13. (a) Sankar Lal, G.; Pez, G. P.; Syvret, R. G. Chem. Rev. 1996, 96, 1737; (b) Ma, J. A.;
Cahard, D. Chem. Rev. 2004, 104, 6119.
14. For reviews see: (a) Hayashi, T. Synlett 2001, 879; (b) Hayashi, T.; Yamasaki, K.
Chem. Rev. 2003, 103, 2829; (c) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103,
169; (d) Darses, S.; Genêt, J.-P. Eur. J. Org. Chem. 2003, 4313; (e) Hayashi, T. Bull.
Chem. Soc. Jpn 2004, 77, 13.
Acknowledgements
We are grateful to the EPSRC for funding. Dr. Anneke Lubben
(Mass Spectrometry Service at the University of Bath) and the
EPSRC Mass Spectrometry Service at the University of Wales Swan-
sea are thanked for valuable assistance.
15. (a) Shintani, R.; Yamagami, T.; Kimura, T.; Hayashi, T. Org. Lett. 2005, 7, 5317;
(b) Shintani, R.; Tokunaga, N.; Doi, H.; Hayashi, T. J. Am. Chem. Soc. 2004, 126,
6240.
16. Douglas, T. M.; Le Nôtre, J.; Brayshaw, S. K.; Frost, C. G.; Weller, A. S. Chem.
Commun. 2006, 3408.
Supplementary data
Experimental procedures and compound characterisation data
are available. Supplementary data associated with this article can
17. (a) Jereb, M.; Stavber, S.; Zupan, M. Synthesis 2003, 853; (b) Jereb, M.; Stavber,
S.; Zupan, M. Tetrahedron 2003, 59, 5935.
18. Antelo, J. M.; Crugeiras, J.; Leis, J. R.; Ríos, A. J. Chem. Soc., Perkin Trans. 2 2000,
2071.
19. Pearson, R. G.; Songstad, J. J. Am. Chem. Soc. 1967, 89, 1827.
20. For examples of other halogenation reactions using halide salts coupled with
oxidants, see: (a) Mohanakrishnan, A. K.; Prakash, C.; Ramesh, N. Tetrahedron
2006, 62, 3242; (b) Mohan, K. W. K.; Narender, M. N.; Kulkarni, S. J. Tetrahedron
Lett. 2004, 45, 8015; (c) Park, M. Y.; Yang, S. G.; Jadhav, V.; Kim, Y. H.
Tetrahedron Lett. 2004, 45, 4887; (d) Braddock, D. C.; Cansell, G.; Hermitage, S.
A. Synlett 2004, 461; (e) Sha, C. K.; Young, J. J.; Jean, T. S. J. Org. Chem. 1987, 52,
3919.
References and notes
1. (a) Ho, T. L. Tandem Organic Reactions; Wiley: New York, 1992; (b) Tietze, L. F.
Chem. Rev. 1996, 96, 115; (c) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996,
96, 137; (d) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195; (e)
Malacria, M. Chem. Rev. 1996, 96, 289.