10.1002/adsc.202000313
Advanced Synthesis & Catalysis
Catal. 2017, 359, 1981-1989; m) Y.-C. Wang, R.-X.
Wang, G. Qiu, H. Zhou, W. Xiec, J.-B. Liu, Org.
Chem. Front. 2019, 6, 2471-2479; n) Y.-C. Wang, J.-
B. Liu, H. Zhou, W. Xie, P. Rojsitthisak, G. Qiu, J.
Org. Chem. 2020, 85, 1906-1914; o) Z. Lei, Y. Si-
Tian, W. Peng, L. Jin-Biao, Chin. J. Org. Chem., 2020,
40, ASAP. doi: 10.6023/cjoc201912029.; p) X. Zhang,
X. Wan, Y. Cong, X. Zhen, Q. Li, D. Zhang-Negrerie,
Y. Du, K. Zhao, J. Org. Chem. 2019, 84, 10402-
10411; q) B. S. Chinta, H. Sanapa, K. P. Vasikarla, B.
Baire, Org. Biomol. Chem. 2018, 21, 3947-3951.
alcohol, b) the role of carbocation for the enhanced
rates of cyclization, i.e., possible activation of alkyne
by carbocation, and c) no role of HCl in the reported
cascade process.
Experimental Section
General procedure for the synthesis of substituted
isocoumarin derivatives
To a solution of the ester (1 equiv.) in 1,2-dichloroethane
(1,2-DCE) (5 ml/0.21 mmol, 0.04 M), alcohol (1.3 equiv.)
under nitrogen atmosphere was added FeCl3 (0.05 equiv.).
The reaction tube was stirred at 80 °C in oil bath for 30
min-24 h. After completion of the reaction (by TLC
analysis), saturated NaHCO3 and CH2Cl2 were added to
reaction mixture and extracted with CH2Cl2. The crude
material was purified by column chromatography to yield
the corresponding isocoumarin derivatives.
[2] a) H. Sashida, A. Kawamukai, Synthesis 1999, 1145-
1148; b) S. A. Shahzad, C. Venin, T. Wirth, Eur. J.
Org. Chem. 2010, 3465-3472; c) X.-D. Fei, Z.-Y. Ge,
T. Tang, Y.-M. Zhu, S.-J. Ji, J. Org. Chem. 2012, 77,
3230; e) H. Liu, Y. Yang, J. Wu, X.-N. Wang, J.
Chang, Chem.Commun. 2016, 52, 6801-6804; f) G.
Liu, G. Kuang, X. Zhang, N. Lu, Y. Fu, Y. Peng, Y.
Zhou, Org. Lett. 2019, 21, 3043-3047; From 2-
alkynylbenzoates: g) M. Uchiyama, H. Ozawa, K.
Takuma, Y. Matsumoto, M. Yonehara, K. Hiroya, T.
Sakamoto, Org. Lett. 2006, 8, 5517-5520; h) M.
Hellal, J.-J. Bourguignon, F. J.-J. Bihel, Tetrahedron
Org. Lett. 2009, 11, 5378-5381; j) J. Francos, V.
Cadierno, Catalysts 2017, 7, 328; k) Y. Kita, T. Yata,
Y. Nishimoto, K. Chibac, M. Yasuda, Chem. Sci.
2018, 9, 6041-6052; l) J. Gianni, V. Pirovano, G.
Abbiati, Org. Biomol. Chem. 2018, 16, 3213-3219; m)
F. Curti, M. Tiecco, V. Pirovano, R. Germani, A.
Caselli, E. Rossi, G. Abbiati, Eur. J. Org. Chem.
2019, 1904-1914.
General procedure for the synthesis of phthalides
derivatives
To a solution of the hydroxy-ester (1 equiv.) in 1,2-
dichloroethane (3 ml/0.13 mmol, 0.04 M) under nitrogen
atmosphere was added FeCl3 (5 mol%). The reaction tube
was stirred at 55 °C for 5-30 min. After completion of the
reaction (by TLC analysis), saturated NaHCO3 and CH2Cl2
were added to reaction mixture and extracted with CH2Cl2.
The crude material was purified by flash column
chromatography to yield the corresponding phthalides
derivatives.
Acknowledgements
[3] a) T. Yao, R. C. Larock, Tetrahedron Lett. 2002, 43,
2003, 68, 5936-5942; c) R. Rossi, A. Carpita, F.
Bellina, P. Stabilea, L. Mannina, Tetrahedron 2003,
59, 2067-2081; d) Y. Wang, J. D. Burton, J. Org.
Chem. 2006, 71, 3859-3862; e) M. Peuchmaur, V.
Lisowski, C. Gandreuil, L. T. Maillard, J. Martinez, J.-
F.¸ Hernandez, J. Org. Chem. 2009, 74, 4158-4165; f)
J. H. Park, S. V. Bhilare, S. W. Youn, Org. Lett. 2011,
13, 2228-2231; g) A. Speraꢀca, B. Godoi, S. Pinton, D.
F. Back, P. H. Menezes, G. Zeni, J. Org. Chem. 2011,
76, 6789-6797; h) Z. Li, J. Hong, L. Weng, X. Zhou,
Tetrahedron 2012, 68, 1552-1559; i) P. Saikia, S.
Gogoi, Adv. Synth. Catal. 2018, 360, 2063-2075; j) J.
S. S. Neto, D. F. Back, G. Zeni, Eur. J. Org. Chem.
2015, 1583-1589.
[4] a) K. Komeyama, K. Takahashi, K. Takaki, Org. Lett.
2008, 10, 5119-5122; b) Y. Soltani, L. C. Wilkins, R.
L. Melen, Angew. Chem. Int. Ed. 2017, 56, 11995-
11999; c) M. A. Amin, J. S. Johnson, S. A. Blum,
Organometallics 2014, 33, 5448-5456; d) Y. Shi, K. E.
Roth, S. D. Ramgren, S. A. Blum, J. Am. Chem. Soc.
2009, 131, 18022-18023; e) A. S. K. Hashmi, C.
Lothschütz, R. Döpp, M. Ackermann, J. D. B. Becker,
M. Rudolph, C. Scholz, F. Rominger, Adv. Synth.
Catal. 2012, 354, 133-147; f) Y. Soltani, L. C.
We thank Indian Institute of Technology Madras, Chennai for
infrastructural facility. We thank SERB-INDIA, for financial
support through CRG/2019/000988. SG thanks IIT Madras for
HTRA fellowship
References
[1] a) A. Balog, S. V. Geib, D. P. Curran, J. Org.
Chem.1995, 60, 345-352; b) U. Jana, S. Biswas, S.
Maiti, Eur. J. Org. Chem. 2008, 5798-5804; c) S.
Biswas, S. Maiti, U. Jana, Eur. J. Org. Chem. 2009,
2354-2359; d) Z. Liu, J. Wang, Y. Zhao, B. Zhou, Adv.
Synth. Catal. 2009, 351, 371-374; e) L. Chen, L. Yu,
Y. Deng, Y. Cui, G. Bian, J. Cao, Org. Biomol. Chem.
2016, 14, 564-569; f) L. K. Kinthada, K. N. Babu, D.
Padhi, A. Bisai, Eur. J. Org. Chem. 2017, 3078-3091;
g) R. R. Naredla, D. A. Klumpp, Chem. Rev. 2013,
113, 6905-6948; h) R. Kumara, E. V. V. D. Eycken,
Chem. Soc. Rev., 2013, 42, 1121-1146; i) D. Lebœuf,
V. Gandon, Synthesis 2017, 49, 1500-1508; j) I. Bauer,
H.-J. Gandon Chem. Rev. 2015, 115, 3170-3387; k) S.
Schroeder, C. Strauch, N. Gaelings, M. Niggermann,
Angew. Chem. Int. Ed. 2019, 58, 5119-5123; l) S.-T.
Yuan, Y.-H. Wang, J.-B. Liu, G. Qiu, Adv. Synth.
6
This article is protected by copyright. All rights reserved.