LETTER
Short Synthesis of (+)-1-Deoxynojirimycin
2711
Tetrahedron: Asymmetry 2002, 13, 795. (h) Takahata, H.;
Banba, Y.; Sasatani, M.; Nemoto, H.; Kato, A.; Adachi, I.
Tetrahedron 2004, 60, 8199; and literature cited therein.
(i) Guaragna, A.; D’Errico, S.; D’Alonzo, D.; Pedatella, S.;
Palumbo, G. Org. Lett. 2007, 9, 3473. (j) Bagal, S. K.;
Davies, S. G.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Scott,
P. M.; Thomson, J. E. Org. Lett. 2010, 12, 136. (k) Palyam,
N.; Majewski, M. J. Org. Chem. 2009, 74, 4390.
Hydrogenolysis of Cbz group and in situ cyclization in re-
fluxing EtOH20 followed by deprotection by aqueous HCl
in EtOH gave (+)-1-deoxynojirimycin (1) as its hydro-
chloride salt in 96% yield by one-pot reaction. The phys-
ical and spectral properties for compound 1 were in good
agreement with the previously reported data.20,21
In summary, we have developed an efficient, highly dia-
stereoselective synthesis of (+)-1-deoxynojirimycin from
readily available L-isoserine. The key step involves the di-
astereoselective syn addition reaction of a-alkoxy alde-
hyde and vinylzinc nucleophile, generated conveniently
from alkyne 7 by a hydrozirconation–transmetalation se-
quence and this synthesis of 1 necessitates the purification
of only four intermediates. More importantly, other stereo-
isomers of the 1-deoxynojirimycin family could be acces-
sible from L- or D-isoserine through different reductive
coupling conditions and stereoselective epoxidation of
allylic alcohol 4 by the same procedures.
(10) (a) Schmidt, U.; Meyer, R.; Leitenberger, V.; Stabler, F.;
Lieberknecht, A. Synthesis 1991, 409. (b) Schmidt, U.;
Meyer, R.; Leitenberger, V.; Lieberknecht, A.; Griesser, H.
Chem. Commun. 1991, 275.
(11) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959, 81,
2748.
(12) For some examples of stereoselective additions to a-alkoxy
aldehydes and ketones rationalized by chelation, see:
(a) Martin, S. F.; Li, W. J. Org. Chem. 1989, 54, 6129.
(b) Amouroux, R.; Ejjiyar, S.; Chastrette, M. Tetrahedron
Lett. 1986, 27, 1035. (c) Asami, M.; Kimura, R. Chem. Lett.
1985, 4, 1221. (d) Uenishi, J.; Tomozane, H.; Yamato, M.
J. Chem. Soc., Chem. Commun. 1985, 717.
(13) (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett.
1968, 9, 2119. (b) Cherest, M.; Felkin, H. Tetrahedron Lett.
1968, 2205. (c) Anh, N. T.; Eisenstein, O. E. Nouv. J. Chim.
1977, 1, 61. (d) Anh, N. T. Top. Curr. Chem. 1980, 88, 145.
(14) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197.
(15) The structure of Garner’s aldehyde is shown in Figure 2.
Supporting Information for this article is available online at
Acknowledgment
OHC
This work was supported by the National Science & Technology
Major Project ‘Key New Drug Creation and Manufacturing Pro-
gram’, China (Number: 2009ZX09102-026).
O
N
Boc
Figure 2
References and Notes
(1) Inouye, S. E.; Tsuruoka, Y.; Ito, T.; Niida, T. Tetrahedron
1968, 24, 2125.
(2) Somsak, L.; Nagya, V.; Hadady, Z.; Docsa, T.; Gergely, P.
Curr. Pharm. Des. 2003, 9, 1177.
(3) Weiss, M.; Hettmer, S.; Smith, P.; Ladish, S. Cancer Res.
2003, 63, 3654.
(4) Greimel, P.; Spreitz, J.; Stutz, A. E.; Wrodnigg, T. M. Curr.
Topics Med. Chem. 2003, 3, 513.
(5) Butters, T. D.; Dwek, R. A.; Platt, F. M. Chem. Rev. 2000,
100, 4683.
(6) Ficher, P. B.; Collin, M.; Karlsson, G. B.; Lames, W.;
Butters, T. D.; Davis, S. J.; Gordon, S.; Dwek, R. A.; Platt,
F. M. J. Virol. 1995, 69, 5791.
(7) Fischl, M. A.; Resnick, L.; Cooms, R.; Kremer, A. B.;
Pottage, J. C. Jr.; Fass, R. J.; Fife, K. H.; Powderly, W. G.;
Collier, A. C.; Aspinalli, R. L. J. Acquir. Immune Defic.
1994, 7, 139.
(8) Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; Weely, S.;
Hrebicek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.;
Gow, I.; Elstein, D.; Zimran, A. Lancet 2000, 355, 1481.
(9) For comprehensive reviews, see: (a) Afarinkia, K.; Bahar,
A. Tetrahedron: Asymmetry 2005, 16, 1239. (b) Pearson,
M. S. M.; Allaimat, M. M.; Fargeas, V.; Lebreton, J. Eur. J.
Org. Chem. 2005, 2159. For carbohydrate-based routes to
DNJ and congeners, see: (c) Asano, N.; Oseki, K.; Kizu, H.;
Matsui, K. J. Med. Chem. 1994, 37, 3701. (d) O’Brien, J.
L.; Tosin, M.; Murphy, P. V. Org. Lett. 2001, 3, 3353.
(e) Spreidz, J. S.; Stutz, A. E.; Wrodnigg, T. M. Carbohydr.
Res. 2002, 337, 183; and references cited therein. For non-
carbohydrate-based routes to DNJ and congeners, see:
(f) Haukaas, M. H.; O’Doherty, G. A. Org. Lett. 2001, 3,
401. (g) Ruiz, M.; Ojea, V.; Ruanova, T. M.; Quintela, J. M.
(16) Murakami, T.; Furusawa, K. Tetrahedron 2002, 58, 9257.
(17) Procedure for the Synthesis of 5: To a 250-mL flame-dried
flask loaded with zirconocene chloride hydride (4.63 g, 18.0
mmol) under argon was added anhyd CH2Cl2 (35 mL). The
resulting suspension was cooled to 0 °C after which 7 (3.06
g, 18.0 mmol) was added dropwise. The mixture was then
stirred at r.t. until the suspension had fully dissolved forming
a yellow solution (1 h). The solution was cooled to –30 °C
after which diethylzinc (16.5 mL, 18.0 mmol, 1.1 M in
toluene) was added dropwise. After 15 min of stirring
aldehyde 6 (3.95 g, 15.0 mmol) was added as a CH2Cl2
solution (20 mL) via cannula. After 15 min of further stirring
at –30 °C, the solution was allowed to warm to 0 °C and the
orange mixture was stirred overnight. The reaction mixture
was diluted with CH2Cl2 (80 mL) followed by addition of
sodium potassium tartrate (15 g) and H2O (30 mL, added
slowly). The resulting mixture was stirred for 45 min and
filtered through a pad of celite. The phases were separated
and the aqueous phase was extracted with CH2Cl2 (3 × 40
mL). The organic layer was dried over Na2SO4, and
concentrated to give a crude product, which was chromatog-
raphed on silica gel (10% EtOAc in cyclohexane) to give
compound 5 (4.96 g, 76%) as a colorless oil; [a]D25 –12.1 (c
= 2.0, CH2Cl2). 1H NMR (400 MHz, DMSO): d = 7.31–7.40
(m, 5 H), 5.81 (dt, J = 15.2, 4.0 Hz, 1 H), 5.65 (dd, J = 15.2,
5.2 Hz, 1 H), 5.16 (d, J = 4.8 Hz, 1 H), 5.01–5.10 (m, 2 H),
4.02–4.17 (m, 4 H), 3.46–3.53 (m, 1 H), 3.19 (t, J = 8.8 Hz,
1 H), 1.51 (s, 3 H), 1.44 (s, 3 H), 0.85 (s, 9 H), 0.02 (s, 6 H).
13C NMR (100 MHz, DMSO): d = 152.0, 137.2, 131.4,
128.8, 128.7, 128.3, 128.0, 93.8, 77.2, 71.2, 66.1, 62.9, 46.7,
26.3, 26.2, 24.3, 18.4, –4.8. IR: 3436, 2929, 1710, 1411 cm–1.
LRMS (EI, 70 eV): m/z (%) = 420 (8) [M+ – Me], 91 (100).
Synlett 2011, No. 18, 2709–2712 © Thieme Stuttgart · New York