10.1002/anie.201907514
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
M. B. Smith, J. March, March’s Advanced Organic Chemistry, 7th Ed,
Wiley, New York, 2001.
Structures were optimized and thermodynamic/ solvent effects
calculated at the PBE0-D3BJ/def2-SVP,def2-TZVP(Ir) level of
theory with the solvent accounted for using the SMD model.
Single-point energetics were evaluated on these stationary
points at the PBE0-D3BJ/def2-TZVPP level of theory.14
(a) R. Cano, A. Zakarian, G. P. McGlacken, Angew. Chem. Int. Ed.
2017, 56, 9278–9290; (b) E. J. Corey, D. Enders, Tetrahedron Lett.
1976, 17, 3–6. (c) D. A. Evans, M. D. Ennis, D. J. Mathre, J. Am. Chem.
Soc. 1982, 104, 1737–1739. (d) D. A. Nicewicz, D. W. C. MacMillan,
Science 2008, 322, 77–80. (d) B. M. Trost, M. L. Crawley, Chem. Rev.
2003, 103, 2921–2944.
[3]
[4]
For examples, see: (a) K. Ohmatsu, Y. Furukawa, M. Kiyokawa, T. Ooi,
Chem. Commun. 2017, 53, 13113–13116; (b) T. Ooi, D. Kato, K.
Inamura, K. Ohmatsu, K. Maruoka, Org. Lett. 2007, 9, 3945–3948; (c) J.
C. Hethcox, S. E. Shockley, B. M. Stoltz, ACS Catal. 2016, 6, 6207–
6213; (d) X. Jiang, J. F. Hartwig, Angew. Chem. Int. Ed. 2017, 56,
8887–8891.
For representative reviews of hydrogen borrowing catalysis, see: (a) G.
E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681–703; (b) S.
Bähn, S. Imm, L. Neubert, M. Zhang, H. Neumann, M. Beller,
ChemCatChem 2011, 3, 1853–1864; (c) S. Pan, T. Shibata, ACS Catal.
2013, 3, 704–712; (d) C. Gunanathan, D. Milstein, Science 2013, 341,
1229712; (e) Y. Obora, ACS Catal. 2014, 4, 3972–3981; (f) Q. Yang, Q.
Wang, Z. Yu, Chem. Soc. Rev. 2015, 44, 2305–2329; (g) A.
Nandakumar, S. P. Midya, V. G. Landge, E. Balaraman, Angew. Chem.
Int. Ed. 2015, 54, 11022–11034; (h) J. Leonard, A. J. Blacker, S. P.
Marsden, M. F. Jones, K. R. Mulholland, R. Newton, Org. Process Res.
Dev. 2015, 19, 1400–1410; (i) A. Corma, J. Navas, M. J. Sabater,
Chem. Rev. 2018, 118, 1410–1459; (j) M. Holmes, L. A. Schwartz, M. J.
Krische, Chem. Rev. 2018, 118, 6026–6052. For related self
condensation of alcohols (Guerbet reaction), see: (k) D. Gabriëls, W. Y.
Hernández, B. Sels, P. V. D. Voort, A. Verberckmoes, Catal. Sci.
Technol. 2015, 5, 3876–3902
[5]
(a) J. R. Frost, C. B. Cheong, W. M. Akhtar, D. F. J. Caputo, N. G.
Stevenson, T. J. Donohoe, J. Am. Chem. Soc. 2015, 137, 15664–
15667; (b) W. M. Akhtar, C. B. Cheong, J. R. Frost, K. E. Christensen,
N. G. Stevenson, T. J. Donohoe, J. Am. Chem. Soc. 2017, 139, 2577–
2580.
[6]
[7]
W. M. Akhtar, R. J. Armstrong, J. R. Frost, N. G. Stevenson, T. J.
Donohoe, J. Am. Chem. Soc. 2018, 140, 11916–11920.
(a) D. J. Shermer, P. A. Slatford, D. D. Edney, J. M. J. Williams,
Tetrahedron: Asymm. 2007, 18, 2845–2848. (b) T. Suzuki, Y. Ishizaka,
K. Ghozati, D.-Y. Zhou, K. Asano, H. Sasai, Synthesis 2013, 45, 2134–
2136. (c) G. Onodera, Y. Nishibayashi, S. Uemura, Angew. Chem. Int.
Ed. 2006, 45, 3819–3822. (d) A. Quintard, T. Constantieux, J.
Rodriguez, Angew. Chem. Int. Ed. 2013, 52, 12883–12887.
Figure 1. Computational studies to rationalise absolute stereochemical
outcome.
In conclusion, we have developed a highly enantioselective
synthesis of multisubstituted cyclohexanes via hydrogen
borrowing catalysis. This process is mediated by two
commercially available reagents: Ir(cod)(acac) and DTBM-
SEGPHOS and provides enantioenriched cyclohexanes with
control over both diastereo- and enantioselectivity. The origins of
stereoselectivity in this system have been probed by both
experimental studies and DFT calculations. This approach
constitutes the first general catalytic asymmetric strategy within
the rapidly developing field of enolate hydrogen borrowing
catalysis.
[8]
[9]
Krische and co-workers have developed several related processes
involving asymmetric carbometallation. For example, see: (a) J. M.
Ketcham, I. Shin, T. P. Montgomery, M. J. Krische, Angew. Chem. Int.
Ed. 2014, 53, 9142–9150. (b) S. W. Kim, W. Zhang, M. J. Krische, Acc.
Chem. Res. 2017, 50, 2371–2380; (c) B. R. Ambler, B. W. H. Turnbull,
S. R. Suravarapu, M. M. Uteuliyev, N. O. Huynh, M. J. Krische, J. Am.
Chem. Soc. 2018, 140, 9091–9094.
(a) Z. Zhang, N. A. Butt, W. Zhang, Chem. Rev. 2016, 116, 14769–
14827; (b) T. L. Church, P. G. Andersson, Coord. Chem. Rev. 2008,
252, 513–531; (c) J. J. Verendel, O. Pàmies, M. Diéguez, P. G.
Andersson, Chem. Rev. 2014, 114, 2130–2169.
[10] The corresponding cyclic enone was also isolated in 48% yield (see SI
for details).
[11] The minor diastereoisomer results from epimerization at the α-
stereocentre implying that reduction proceeds with complete
Acknowledgements
stereocontrol.
A mismatched reaction with (S)-DTBM-SEGPHOS
We thank the EPSRC [R.J.A. and T.J.D., Established Career
Fellowship (EP/L023121/1)] and University College [R.J.A] for
funding. We acknowledge the EPSRC Centre for Doctoral
training, Theory and Modelling in Chemical Sciences
(EP/L015722/1) for a studentship to TY generously supported by
AWE and for access to the Dirac cluster at Oxford.
afforded 3m in 83% yield and 58:5:37 d.r. (see SI for details).
[12] H. C. Brown, T. Imai, M. C. Desai, B. Singaram, J. Am. Chem. Soc.
1985, 107, 4980–4983.
[13] E. P. K. Olsen, T. Singh, P. Harris, P. G. Andersson, R. Madsen, J. Am.
Chem. Soc. 2015, 137, 834–842.
[14] (a) F. Neese, WIREs Comput. Mol. Sci. 2018, 8, e1327; (b) L.-P. Wang,
C. Song, J. Chem. Phys. 2016, 144, 214108; (c) S. Grimme, J. Antony,
S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; (d) F. Weigend,
R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; (e) A. V.
Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113,
6378–6396.
Keywords: catalysis • hydrogen borrowing • asymmetric •
iridium • enantioselective
This article is protected by copyright. All rights reserved.