G. Wu et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5272–5276
5275
4. Lee, K. H. J. Nat. Prod. 2004, 67, 273.
OCH3
A
OCH3
A
5. Chen, D. F.; Zhang, S. X.; Xie, L.; Xie, J. X.; Chen, K.; Kashiwada, Y.; Zhou, B. N.;
Wang, P.; Cosentino, L. M.; Lee, K. H. Bioorg. Med. Chem. 1997, 5, 1715.
6. Kuo, Y. H.; Kuo, L. M.; Chen, C. F. J. Org. Chem. 1997, 62, 3242.
7. Yasukawa, K.; Ikeya, Y.; Mitsuhashi, H.; Iwasaki, M.; Aburada, M.; Nakagawa, S.;
Takeuchi, M.; Takido, M. Oncology 1992, 49, 68.
8. Zhu, M.; Lin, K. F.; Yeung, R. Y.; Li, R. C. J. Ethnopharmacol. 1999, 67, 61.
9. Wang, J. P.; Raung, S. L.; Hsu, M. F.; Chen, C. C. Br. J. Pharmacol. 1994, 113, 945.
10. Wan, C. K.; Zhu, G. Y.; Shen, X. L.; Chattopadhyay, A.; Dey, S.; Fong, W. F.
Biochem. Pharmacol. 2006, 72, 824.
11. Pan, Q.; Lu, Q.; Zhang, K.; Hu, X. Cancer Chemother. Pharmacol. 2006, 58, 99.
12. Li, L.; Pan, Q.; Sun, M.; Lu, Q.; Hu, X. Life Sci. 2007, 80, 741.
13. Coleman, R. S.; Gurrala, S. R.; Mitra, S.; Raao, A. J. Org. Chem. 2005, 70, 8932.
14. Collier, P. N.; Campbell, A. D.; Patel, I.; Raynham, T. M.; Taylor, R. J. J. Org. Chem.
2002, 67, 1802.
H3CO
H3CO
H3CO
H3CO
O
O
O
O
B
B
O
O
O
O
36
37
Figure 2. Structures of lactone-linked biphenyl derivatives.
15. Urawa, Y.; Ogura, K. Tetrahedron Lett. 2003, 44, 271.
16. Monovich, L. G.; Le Huerou, Y.; Roenn, M.; Molander, G. A. J. Am. Chem. Soc.
2000, 122, 52.
28 (R1 = R2 = aldehyde), respectively. In contrast, biphenyls 27 and
35 with two bulky groups, 2-nitroprop-1-enyl and methylbenzo-
ate, respectively, showed significant potency against all tested tu-
mor cell lines.
17. Alam, A.; Takaguchi, Y.; Ito, H.; Yoshida, T.; Tsuboi, S. Tetrahedron 2005, 61, 1909.
18. Rubinstein, L. V.; Shoemaker, R. H.; Paull, K. D.; Simon, R. M.; Tosini, S.; Skehan,
P.; Scudiero, D. A.; Monks, A.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1113.
19. Min, H. Y.; Park, E. J.; Hong, J. Y.; Kang, Y. J.; Kim, S. J.; Chung, H. J.; Woo, E. R.;
Hung, T. M.; Youn, U. J.; Kim, Y. S.; Kang, S. S.; Bae, K.; Lee, S. K. Bioorg. Med.
Chem. Lett. 2008, 18, 523.
These results prompted us to consider whether steric compres-
sion between adjacent 2,20-substituents could alter the biphenyl
torsional angle, resulting in a stereo-configuration that would di-
rectly affect the molecular affinity with a target receptor/enzyme
and result in different inhibitory activity against tumor cell lines.
Biphenyl configuration (S- or R-) in natural dibenzocyclooctandi-
ene lignans can play an important role in antiproliferative effects.
For example, wuweizisu B with R-biphenyl configuration is less po-
tent than gomisin N with S-biphenyl configuration.19 To obtain re-
lated information in our study, lactone-linked biphenyls 36 and 37
(Fig. 2) were evaluated in the same assays. Although neither com-
pound showed significant potency, the latter compound with a se-
ven-membered lactone ring was more active than the former with
a six-membered lactone ring. These data suggest that both bigger
torsional angles caused by two bulky substituents on the 2,20-posi-
tions and the configuration of the biphenyls might play important
roles in inhibition of tumor cell growth.
Interestingly, several active compounds (19, 20, 28, 37, 39, 40,
42, and 43) were also 1.4–6.8 times more potent against the
drug-resistant KB-Vin cell line than the KB cell line. Thus, we
hypothesize that the unsymmetrical biphenyl scaffolds are rela-
tively poor substrates for the drug efflux pump (MDR) and could
be developed as novel leads with low potential for drug resistance
development.
20. Compound 18: Yield 71%; white solid, mp 88–90 °C; 1H NMR 9.65 (1H, s), 7.43
(3H, m), 7.34 (3H, m), 4.00 (3H, s), 3.97 (3H, s), 3.60 (3H, s); ESI-MS m/z: 295
(M+Na+).
Compound 19: Yield 65%; white solid, mp 71–72 °C; 1H NMR 9.88 (1H, s), 9.60
(1H, s), 8.09 (1H, dd, J = 1.6 and 7.6 Hz), 7.68 (1H, dd, J = 1.6 and 7.6 Hz), 7.60
(1H, dd, J = 1.6 & 7.6 Hz), 7.42 (1H, s), 7.32 (1H, dd, J = 1.6 and 7.6 Hz), 4.00 (6H,
s), 3.55 (3H, s); ESI-MS m/z: 323 (M+Na+).
Compound 20: Yield 65%; white solid, mp 78–79 °C; 1H NMR 9.82 (1H, s), 8.02
(1H, dd, J = 1.2 and 8.0 Hz), 7.59 (1H, dd, J = 1.2 and 8.0 Hz), 7.50 (1H, d,
J = 8.0 Hz), 7.38 (1H, s), 7.19 (1H, d, J = 8.0 Hz), 3.96 (6H, s), 3.52 (6H, s); ESI-MS
m/z: 353 (M+Na+).
Compound 21: Yield 96%; white solid, mp 106–108 °C; 1H NMR 7.48 (1H, d,
J = 7.2 Hz), 7.37 (2H, m), 7.13 (1H, d, J = 7.2 Hz), 6.88 (1H, s), 4.31 (2H, s), 4.22
(2H, s), 3.92 (3H, s), 3.90 (3H, s), 3.54 (3H, s); ESI-MS m/z: 327 (M+Na+).
Compound 22: Yield 97%, white solid, mp 68–69 °C; 1H NMR: 7.54 (1H, d,
J = 8.0 Hz), 7.40 (1H, s), 7.30 (2H, m), 7.03 (1H, d, J = 8.0 Hz), 4.38 (2H, m), 3.96
(6H, s), 3.58 (3H, s), 3.52 (3H, s); ESI-MS m/z 355 (M+Na+).
Compound 23: Yield 90%, pale yellow solid, mp 123–124 °; 1H NMR (DMSO)
11.33 (1H, s), 11.27 (1H, s), 7.89 (1H, m), 7.57 (1H, s), 7.47 (2H, m), 7.35 (1H, s),
7.26 (1H, s), 7.20 (1H, s), 3.90 (3H, s), 3.84 (3H, s), 3.49 (3H, s); ESI-MS m/z 353
(M+Na+).
Compound 24: Yield 80%, white solid, mp 68–70 °C, 1H NMR 7.46 (1H, dd,
J = 1.2 & 7.2 Hz), 7.39 (2H, m), 7.18 (1H, dd, J = 1.2 and 7.2 Hz), 6.80 (1H, s),
4.71–4.87 (4H, m), 3.91 (6H, s), 3.59 (3H, s), 2.01 (6H, s); ESI-MS m/z: 411
(M+Na+).
Compound 25: Yield 20%; yellow oil, 1H NMR 7.45 (1H, m), 7.37 (2H, m), 7.15
(1H, dd, J = 1.2 and 6.8 Hz), 6.78 (1H, s), 4.93 (2H, s), 4.78 (2H, s), 3.90 (6H, s),
3.56 (3H, s), 2.58 (8H, m); ESI-MS m/z 527 (M+Na+).
Compound 26: Yield 99%, yellow oil; 1H NMR 7.97 (4H, m), 7.57 (1H, d, J = 7.2
Hz), 7.35–7.52 (8H, m), 7.27 (1H, dd, J = 7.2 and 2.8 Hz), 6.86 (1H, s), 5.17 (2H,
d, J = 7.6), 5.00 (2H, s), 3.89 (6H, s), 3.61 (3H, s);ESI-MS m/z: 535 (M+Na+).
Compound 27: Yield 63%, brown solid, mp 57–58 °C, 1H NMR 7.62 (1H, s), 7.49
(2H, m), 7.47 (2H, m), 7.26 (1H, m), 6.67 (1H, s), 3.95 (3H, s), 3.93 (3H, s), 3.61
(3H, s), 2.30 (3H, s), 2.28 (3H,s); ESI-MS 437 [M+Na+].
In conclusion, twenty-six unsymmetrical biphenyls were syn-
thesized and evaluated in DU145, A549, KB and KB-Vin tumor cell
lines. Three compounds 27, 35 and 40 showed very potent activity
Compound 28: Yield 69%, white solid, mp 129–130 °C; 1H NMR 9.64 (1H, s),
9.58 (1H, s), 7.51 (1H, s), 7.38 (1H, s), 6.74 (1H, s), 6.15 (2H, s), 4.00 (6H, s), 3.63
(3H, s); ESI-MS m/z: 367 (M+Na+).
against the HTCL panel with an IC50 value range of 0.04–3.23 lM.
In addition, fourteen active compounds were all more potent
against the drug-resistant KB-Vin cell line than the parental KB cell
line. Preliminary SAR analysis indicated that two bulky substitu-
ents on the 2,20-positions of unsymmetrical biphenyl skeleton are
necessary and crucial for in vitro anticancer activity. Current stud-
ies provide a good starting point to develop unsymmetrical biphe-
nyls as novel anticancer agents. Further lead optimization is
ongoing.
Compound 29: Yield 63%; pale yellow solid, mp 102–103 °C; 1H NMR 9.55 (1H,
s), 7.46 (1H, s), 7.36 (1H, s), 6.63 (1H, s), 6.10 (2H, s), 3.97 (6H, s), 3.63 (3H, s),
3.61 (3H, s); ESI-MS m/z: 397 (M+Na+).
Compound 30: Yield 90%; white solid, mp 109–110 °C; 1H NMR 7.00 (1H, s),
6.87 (1H, s), 6.62 (1H, s), 6.00 (2H, s), 4.31 (2H, d, J = 4 Hz), 4.21 (2H, d, J = 4 Hz),
3.90 (6H, s), 3.61 (3H, s); ESI-MS m/z: 371 (M+Na+).
Compound 31: Yield 93%; white solid, mp 81 °C; 1H NMR 7.25 (1H, s), 7.02 (1H,
s), 6.51 (1H, s), 6.01 (2H, s), 4.26 (2H, m), 3.96 (6H, s), 3.67 (3H, s), 3.58 (3H, s);
ESI-MS m/z: 399 (M+Na+).
Compound 32: Yield 81%, pale yellow solid, mp 82–84 °C, 1H NMR (DMSO-d6)
11.28 (1H, s), 11.15 (1H, s), 7.42 (1H, s), 7.40 (1H, s), 7.30 (1H, s), 7.23 (1H, s),
6.77 (1H, s), 6.14 (2H, ds), 3.87 (3H, s), 3.83 (3H, s), 3.53 (3H, s); ESI-MS m/z:
397 (M+Na+).
Acknowledgments
Compound 33: Yield 92%, white solid, mp 154–155 °C; 1H NMR 6.95 (1H, s),
6.78 (1H, s), 6.64 (1H, s), 6.02 (2H, s), 4.73–4.76 (4H, m), 3.92 (3H, s), 3.89 (3H,
s), 3.64 (3H, s), 2.04 (3H, s), 2.00 (3H, s); ESI-MS m/z: 455 (M+Na+).
Compound 34: Yield 91%, 1H NMR 7.00 (1H, s), 6.89 (1H, s), 6.71 (1H, s), 6.07
(2H, s), 4.63 (4H, m), 3.84 (3H, s), 3.76 (3H, s), 3.51 (3H, s), 2.40 (8H, m); ESI-MS
m/z: 571 (M+Na+).
This investigation was supported by a grant from the Ministry
of Science and Technology of P.R. China (2006DFA33560) awarded
to L. Xie and NIH Grant CA17625 from the National Cancer Institute
awarded to K.H. Lee.
Compound 35: Yield 94%; white gum; 1H NMR 7.96 (4H, m), 7.50 (2H, m), 7.38
(4H, m), 7.05 (1H, s), 6.86 (1H, s), 6.73 (1H, s), 6.00 (2H, ds), 5.06–5.03 (4H, m),
3.89 (6H, s), 3.66 (3H, s); ESI-MS m/z: 579 (M+Na+).
References and notes
Compound 36: Yield 11%; pale yellow solid, mp 191–194 °C; 1H NMR 8.33 (1H,
s), 7.72 (1H, s), 6.87 (1H, s), 6.07 (2H, s), 4.04 (3H, s), 4.00 (3H, s), 3.96 (3H, s);
ESI-MS m/z: 353 (M+Na+).
1. Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022.
2. Saklani, A.; Kutty, S. K. Drug Discov. Today 2008, 13, 161.
3. Charlton, J. L. J. Nat. Prod. 1998, 61, 1447.