6714
B. Movassagh, M. Navidi / Tetrahedron Letters 49 (2008) 6712–6714
less-reactive cyclohexene (Table 1, entry 14) did not produce the
expected product even after prolonged reaction time. Generally,
the reaction goes to completion in a short time (2–4 h). This proce-
dure is compatible with various substituted styrenes and substi-
tuted aromatic disulfides with functionalities such as methyl,
chloro, and methoxy. When the reaction was conducted, under
the same reaction conditions, but under an argon atmosphere,
the addition product, that is, the sulfide (PhCH2CH2SPh) alone
was formed in 44% yield. This indicates that aerial oxygen is in-
volved in the formation of the b-hydroxysulfides. All the products
are known,11 and the structures of the b-hydroxysulfides were
established from their IR, 1H, and 13C NMR spectral data.
In conclusion, we have shown that the addition of a thiolate an-
ion (RSÀ) to styrenes takes place regioselectively giving b-hydroxy-
sulfides in an anti-Markovnikov manner. This reaction is simple
and proceeds under relatively mild conditions with short reaction
times and high selectivity. To our knowledge, this is the first exam-
ple of the reaction of thiolate anions with styrenes for the synthesis
of b-hydroxysulfides. This protocol may lead to a new dimension in
terminal olefin functionalization.
Typical experimental procedure: A mixture of diphenyl disulfide
(109 mg, 0.5 mmol), zinc powder (229 mg, 3.5 mmol), and finely
ground anhydrous AlCl3 (133 mg, 1.0 mmol) was suspended in
MeCN (8 mL) and H2O (2 mL). The mixture was stirred at 80 °C
for 2 h, during which time the zinc powder was almost completely
consumed. Then, 4-methoxystyrene (161 mg, 1.2 mmol) was
added in one portion and stirring was continued at that tempera-
ture for 3.5 h in air. After completion of the reaction, the solution
was filtered, acetonitrile was evaporated, EtOAc (20 mL) was
added, and the mixture was washed with water (2 Â 10 mL), and
the organic layer was dried (Na2SO4). The solvent was evaporated
under reduced pressure, and the crude mixture was purified by
preparative TLC (silica gel; eluent, n-hexane/EtOAc = 4: 1) to afford
pure 1-(4-methoxyphenyl)-2-(phenylsulfanyl)-1-ethanol (182 mg,
Acknowledgments
We thank the K.N. Toosi University of Technology Research
Council and Iranian National Science Foundation (INSF, Grant No.
86063/21) for financial support.
References and notes
1. Kesavan, V.; Bonnet-Delpon, D.; Bégué, J. P. Tetrahedron Lett. 2000, 41, 2895.
2. Bégué, J. P.; Bonnet-Delpon, D.; Kornilov, A. Synthesis 1996, 529.
3. (a) Adger, B. M.; Barkley, J. V.; Bergeron, S.; Cappi, M. W.; Flowerdew, B. E.;
Jackson, M. P.; McCague, R.; Nugent, T. C.; Roberts, S. M. J. Chem. Soc., Perkin
Trans. 1 1997, 3501; (b) Ozaki, E.; Matsui, H.; Yoshinaga, H.; Kitagawa, S.
Tetrahedron Lett. 2000, 41, 2621.
4. Schwartz, A.; Madan, P. B.; Mohacsi, E.; O’Brien, J. P.; Todaro, E.; Coffen, D. L. J.
Org. Chem. 1992, 57, 851.
5. (a) Aifheli, C. G.; Kaye, P. T. Synth. Commun. 1996, 26, 4459; (b) Sugihara, H.;
Mabuchi, H.; Hirata, M.; Iamamoto, T.; Kawamatsu, Y. Chem. Pharm. Bull. 1987,
35, 1930.
6. Lucy, J. R.; Yi, N.; Soderquist, J.; Stein, H.; Cohen, J.; Perun, T. J.; Plattner, J. J. J.
Med. Chem. 1987, 30, 1609.
7. Corey, E. J.; Clark, D. A.; Goto, G.; Marfat, A.; Mioskowski, C.; Samuelsson, B.;
Hammarstrom, S. J. Am. Chem. Soc. 1980, 102, 3663.
8. (a) Movassagh, B.; Soleiman-Beigi, M. Synth. Commun. 2007, 37, 3239; (b)
Movassagh, B.; Sobhani, S.; Kheirdoush, F.; Fadaei, Z. Synth. Commun. 2003, 33,
3103; (c) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. Tetrahedron Lett. 2003,
44, 6785; (d) Fringuelli, F.; Pizzo, F.; Tortoioli, S.; Vaccaro, L. J. Org. Chem. 2003,
68, 8248; (e) Pironti, V.; Colonna, S. Green Chem. 2005, 7, 43.
9. Yadav, J. S.; Reddy, B. V. S.; Gakul, B. Chem. Lett. 2002, 906 and references
therein.
10. (a) Beckwith, A. L. J.; Wagner, R. D. J. Org. Chem. 1981, 46, 3638; (b) Szmant, H.
H.; Mata, A. J.; Namis, A. J.; Panthananickal, A. M. Tetrahedron 1976, 32, 2665.
11. Surendra, K.; Krishnaveni, N. S.; Sridhar, R.; Rao, K. R. J. Org. Chem. 2006, 71,
5819.
12. Kamal, A.; Reddy, D. R.; Rajendar J. Mol. Cat. A: Chem. 2007, 272, 26.
13. (a) Trost, B. M.; Ochiai, M.; McDougal, P. G. J. Am. Chem. Soc. 1978, 100, 7103;
(b) Bewick, A.; Mellor, J. M.; Milano, D.; Owton, W. M. J. Chem. Soc., Perkin
Trans.1 1985, 1045.
14. (a) Movassagh, B.; Mirshojaei, F. Monatsh. Chem. 2003, 134, 831; (b)
Movassagh, B.; Shamsipoor, M. Synlett 2005, 121; (c) Movassagh, B.;
Shamsipoor, M. Synlett 2005, 1316; (d) Movassagh, B.; Fazeli, A. Z.
Naturforsch., B: Chem. Sci. 2006, 61, 194; (e) Movassagh, B.; Tatar, A. Synlett
2007, 1954.
70%, Table 1, entry 8) as a pale yellow oil. IR (neat)
m 1513, 1584,
3429 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.82 (br s, 1H), 3.11 (dd,
;
15. (a) Movassagh, B.; Zakinezhad, Y. Chem. Lett. 2005, 34, 1330; (b) Movassagh, B.;
Mossadegh, A. Synth. Commun. 2004, 34, 1685; (c) Lakouraj, M.; Movassagh, B.;
Fadaei, Z. Synth. Commun. 2002, 32, 1237; (d) Movassagh, B.; Tavoosi, M.
Monatsh. Chem. 2008, 139, 251; (e) Movassagh, B.; Zakinezhad, Y. Z.
Naturforsch., B: Chem. Sci. 2006, 61, 47.
J = 13.7, 9.3 Hz, 1H), 3.30 (dd, J = 13.7, 3.7 Hz, 1H), 3.81 (s, 3H),
4.70 (dd, J = 9.3, 3.7 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 7.22–7.44 (m,
7H); 13C NMR (CDCl3, 75 MHz) d 43.87, 55.30, 71.34, 113.95,
126.70, 127.13, 129.11, 130.15, 134.29, 135.02, 159.36.
16. Movassagh, B.; Navidi, M. Arkivoc 2008, xv, 47.