SCHEME 1
Conversion of Bromoalkenes into Alkynes by Wet
Tetra-n-butylammonium Fluoride
Masaru Okutani and Yuji Mori*
Faculty of Pharmacy, Meijo UniVersity, 150 Yagotoyama,
presence of water provides a useful method, because the
commercially available solid TBAF contains 3 mol of water
and a THF solution of TBAF also contains approximately 5%
water. In this paper, we wish to extend the scope of the TBAF-
induced elimination reaction to 1,1-dibromoalkenes, (Z)-1-
bromoalkenes, and internal bromoalkenes as substrates.
Tempaku-ku, Nagoya 468-8503, Japan
ReceiVed September 23, 2008
1-Bromoalkynes are key building blocks for the synthesis of
di- and polyynes5 and N-alkynyl compounds6 by metal-catalyzed
coupling reactions. They are commonly obtained by bromination
7
of terminal alkynes with NBS/AgNO3 or PPh3/CBr4.8 Dehy-
drobromination of 1,1-dibromoalkenes, which can be obtained
by the Ramirez and Corey-Fuchs procedures,9 also provides a
useful method for preparing 1-bromoalkynes. The common
bases employed for dehydrobromination are strong bases such
as DBU,10 t-BuOK,11 LiHMDS,12 and NaHMDS.13 TBAF is
Tetra-n-butylammonium fluoride was found to be a mild and
efficient base for the elimination reaction of bromoalkenes.
Treatment of 1,1-dibromoalkenes, (Z)-1-bromoalkenes, and
internal bromoalkenes with 5 equiv of TBAF ·3H2O in DMF
yielded terminal and internal alkynes in high yields without
undue regard to the presence of water.
(5) (a) Sonogashira, K. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 3, pp 551-561. (b)
Cadiot, P.; Chodkiewicz, W. In Chemistry of Acetylenes; Viehe, H. G., Ed.;
Marcel Dekker: New York, 1969; pp 597-647. (c) Kim, S.; Lee, Y. M.; Kang,
H. R.; Cho, J.; Lee, T.; Kim, D. Org. Lett. 2007, 9, 2127–2130. (d) Kim, S.;
Kim, S.; Lee, T.; Ko, H.; Kim, D. Org. Lett. 2004, 6, 3601–3604. (e) Gung,
B. W.; Kumi, G. J. Org. Chem. 2004, 69, 3488–3492. (f) Marino, J. P.; Nguyen,
H. N. J. Org. Chem. 2002, 67, 6841–6844. (g) Abele, E.; Rubina, K.; Fleisher,
M.; Popelis, J.; Arsenyan, P.; Lukevics, E. Appl. Organomet. Chem. 2002, 16,
141–147.
(6) (a) Istrate, F. M.; Buzas, A. K.; Jurberg, I. D.; Odabachian, Y.; Gagosz,
F. Org. Lett. 2008, 10, 925–928. (b) Fukudome, Y.; Naito, H.; Hata, T.; Urabe,
H. J. Am. Chem. Soc. 2008, 130, 1820–1821. (c) Zhang, X.; Zhang, Y.; Huang,
J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova,
I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170–4177. (d) Zhang,
Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004,
6, 1151–1154. (e) Frederick, M. O.; Mulder, J. A.; Tracey, M. R.; Hsung, R. P.;
Huang, J.; Kurtz, K. C. M.; Shen, L.; Douglas, C. J. J. Am. Chem. Soc. 2003,
125, 2368–2369. (f) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011–
4014. (g) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5,
3667–3669.
Terminal alkynes are important functional groups, acting as
versatile building blocks and synthetic intermediates in organic
synthesis. Recent progress with transition metal-catalyzed
carbon-carbon coupling reactions such as Sonogashira coupling
reactions, Pauson-Khand reactions, and metatheses has also
proven the importance of terminal acetylenes.1 One of the
methods for the preparation of terminal alkynes is dehydroha-
logenation of haloalkenes with bases such as alkoxides, alkali
hydrides, and alkali metal amides. The disadvantage of these
methods is the need for a very strong base as well as strictly
anhydrous reaction conditions. It is therefore important to
develop a new method that can tolerate moisture or water. In
this context, we have recently reported that tetra-n-butylam-
monium fluoride trihydrate (TBAF·3H2O) induces dehydro-
bromination of 2-bromoalkenes to give the corresponding
terminal acetylenes in high yields (Scheme 1).2
(7) Hofmeister, H.; Annen, K.; Laurent, H.; Wiechert, H. Angew. Chem.,
Int. Ed. Engl. 1984, 23, 727–729.
(8) Wagner, A.; Heitz, M. P.; Mioskowski, C. Tetrahedron Lett. 1990, 31,
3141–3144.
(9) (a) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84,
1745–1747. (b) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769–
3772.
This acetylene formation is interesting in that TBAF is a weak
base and that TBAF contains water. The potential ability of a
fluoride anion to act as a base might be predicted by formation
of a strong H-F bond (569 kJ mol-1).3 Since the function of a
fluoride anion depends upon the initial formation of a hydrogen
bond to a reactant molecule, any water present in the reaction
mixture is considered to reduce its effectiveness.4 Therefore,
the elimination reaction by TBAF without undue regard to the
(10) (a) Ratovelomanana, V.; Rollin, Y.; Ge´be´henne, C.; Gosmini, C.;
Pe´richon, J. Tetrahedron Lett. 1994, 35, 4777–4780. (b) Quesada, E.; Raw, S. A.;
Reid, M.; Roman, E.; Taylor, R. J. K. Tetrahedron 2006, 62, 6673–6680. (c)
Hashimoto, M.; Komano, T.; Nabeta, K.; Hatanaka, Y. Chem. Pharm. Bull. 2005,
53, 140–142. (d) Morita, N.; Moriyama, S.; Shoji, T.; Nakashima, M.; Watanabe,
M.; Kikuchi, S.; Ito, S.; Fujimori, K. Heterocycles 2004, 64, 305–316. (e)
Mamane, V.; Hannen, P.; Fuerstner, A. Chem. Eur. J. 2004, 10, 4556–4575. (f)
Huh, D. H.; Jeong, J. S.; Lee, H. B.; Ryu, H.; Kim, Y. G. Tetrahedron 2002,
58, 9925–9932.
(11) (a) Okamura, W. H.; Zhu, G.-D.; Hill, D. K.; Thomas, R. J.; Ringe, K.;
Borchardt, D. B.; Norman, A. W.; Mueller, L. J. J. Org. Chem. 2002, 67, 1637–
1650. (b) Scott, L. T.; Cooney, M. J.; Otte, C.; Puls, C.; Haumann, T.; Boese,
R.; Smith, A. B., III.; Carroll, P. J.; de Meijere, A. J. Am. Chem. Soc. 1994,
116, 10275–10283. (c) Nicolaou, K. C.; Duggan, M. E.; Hwang, C. K.; Somers,
P. K. J. Chem. Soc., Chem. Commun. 1985, 1359–1362.
* Corresponding author. Phone: +81-52-839-2658. Fax: +81-52-834-8090.
(1) Tsuji, J. In Transition Metal Reagents and Catalysts; Tsuji, J., Ed.; John
Wiley & Sons Ltd.: Chichester, UK, 2000.
(2) Okutani, M.; Mori, Y. Tetrahedron Lett. 2007, 48, 6856–6859.
(3) Clark, J. H. Chem. ReV. 1980, 80, 429–452.
(4) For anhydrous TBAF, see: (a) Sharma, R. K.; Fry, J. L. J. Org. Chem.
1983, 48, 2112–2114. (b) Cox, D. P.; Terpinski, J.; Lawrynowicz, W. J. Org.
Chem. 1984, 49, 3216–3219. (c) Sun, H.; DiMagno, S. G. J. Am. Chem. Soc.
2005, 127, 2050–2051.
(12) (a) Bach, P.; Nilsson, K.; Svensson, T.; Bauer, U.; Hammerland, L. G.;
Peterson, A.; Wallberg, A.; Oesterlund, K.; Karis, D.; Boije, M.; Wensbo, D.
Bioorg. Med. Chem. Lett. 2006, 16, 4788–4791. (b) Wong, L. S.-M.; Sharp,
L. A.; Xavier, N. M. C.; Turner, P.; Sherburn, M. S. Org. Lett. 2002, 4, 1955–
1957. (c) Giacobbe, S. A.; Di Fabio, R.; Baraldi, D.; Cugola, A.; Donati, D.
Synth. Commun. 1999, 29, 3125–3135.
442 J. Org. Chem. 2009, 74, 442–444
10.1021/jo802101a CCC: $40.75 2009 American Chemical Society
Published on Web 11/13/2008