Synthesis of 2-Substituted Indoles and Indolines
SCHEME 1. Strategies for the Synthesis of 2-Substituted
Indoles 4 and Indolines 5
and co-workers have reported a palladium-catalyzed Suzuki-
Miyaura coupling of an enol phosphate derived from N-(tert-
butoxycarbonyl)-4-piperidone with arylboronic acids.6 Very
recently, Skrydstrup et al. described palladium-catalyzed Heck
and Negishi couplings of nonactivated enol phosphates.7,8
We have independently reported the use of Suzuki-Miyaura
coupling of lactone-derived enol phosphates for convergent
synthesis of marine polycyclic ether natural products.9,10 Our
continuous efforts toward expanding the scope of palladium-
catalyzed reactions of R-heteroatom-substituted enol phosphates
have culminated in the development of some novel strategies
for the synthesis of important heterocycles such as dihydropy-
rans and indoles.11,12 We now report in detail our recently
developed strategies for the synthesis of 2-substituted indoles
and indolines starting from imide-derived enol phosphates,
exploiting their unique reactivity profile in palladium-catalyzed
reactions.13,14 The most salient features of our strategies include
(1) a highly chemoselective cross-coupling of imide-derived enol
phosphates, readily prepared from o-haloanilides, with boron
nucleophiles, and (2) generally disfavored 5-endo-trig Heck and
5-endo-trig aryl radical cyclizations. In addition, an efficient
synthesis of an indol-2-yl-1H-quinolin-2-one KDR inhibitor
based on our developed strategy is described.
and Bischler-Mo¨hlau20 indole syntheses have commonly been
adopted for the synthesis of 2-substituted indole derivatives.
However, these synthetic methods often suffer from harsh
reaction conditions and are of limited scope with regard to
functional group compatibility. In contrast, palladium-catalyzed
reactions have recently gained much attention due to their
powerful ability to form C-C and C-N bonds as well as their
mild reaction conditions that tolerate a wide range of functional
groups.21,22
Our strategies for the synthesis of 2-substituted indoles and
indolines starting from imide-derived enol phosphates are
depicted in Scheme 1. Thus, a highly chemoselective cross-
coupling of enol phosphates 2a-c, which are readily derived
from the corresponding imides 1a-c by treatment with KHMDS
and (PhO)2P(O)Cl, would give enecarbamates 3a-c. The
palladium-catalyzed cyclization of 3a-c would afford 2-sub-
stituted indole derivatives 4. In contrast, 5-endo-trig aryl radical
cyclization of 3a-c would furnish 2-substituted indolines 5,
although this type of cyclization is generally disfavored ac-
cording to Baldwin’s rules.23
Results and Discussion
Synthetic Strategies toward 2-Substituted Indoles and
Indolines. Indole is a privileged structural motif that is widely
found in biologically active natural products and pharmaceu-
ticals.15 2-Substituted indoles, especially 2-aryl and 2-heteroaryl
indoles, have frequently been utilized as a potential scaffold in
the search for novel, biologically active small molecules.16
Classical methods such as Fischer,17 Reissert,18 Madelung,19
(6) Larsen, U. S.; Martiny, L.; Begtrup, M. Tetrahedron Lett. 2005, 46, 4261.
(7) (a) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby, P.-O.; Skrydstrup,
T. Angew. Chem., Int. Ed. 2006, 45, 3349. (b) Ebran, J.-P.; Hansen, A. L.; Gøgsig,
T. M.; Skrydstrup, T. J. Am. Chem. Soc. 2007, 129, 6931. (c) Hansen, A. L.;
Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T. J. Org. Chem. 2007, 72, 6464. (d)
See also: Lindhart, A. T.; Skrydstrup, T. Chem.sEur. J. 2008, 14, 8756.
(8) A palladium-catalyzed Kumada coupling of unactivated enol phosphates
has appeared: Miller, J. A. Tetrahedron Lett. 2002, 43, 7111.
(9) (a) Sasaki, M.; Fuwa, H.; Ishikawa, M.; Tachibana, K. Org. Lett. 1999,
1, 1075. (b) Sasaki, M.; Ishikawa, M.; Fuwa, H.; Tachibana, K. Tetrahedron
2002, 58, 1889. (c) Sasaki, M.; Fuwa, H. Synlett 2004, 1851. (d) Sasaki, M.;
Fuwa, H. Nat. Prod. Rep. 2008, 25, 401.
(10) (a) Fuwa, H.; Sasaki, M.; Satake, M.; Tachibana, K. Org. Lett. 2002, 4,
2891. (b) Fuwa, H.; Kainuma, N.; Tachibana, K.; Sasaki, M. J. Am. Chem. Soc.
2002, 124, 14983. (c) Tsukano, C.; Sasaki, M. J. Am. Chem. Soc. 2003, 125,
14294. (d) Tsukano, C.; Ebine, M.; Sasaki, M. J. Am. Chem. Soc. 2005, 127,
4326. (e) Fuwa, H.; Ebine, M.; Sasaki, M. J. Am. Chem. Soc. 2006, 128, 9648.
(f) Fuwa, H.; Ebine, M.; Bourdelais, A. J.; Baden, D. G.; Sasaki, M. J. Am.
Chem. Soc. 2006, 128, 16989. (g) Ebine, M.; Fuwa, H.; Sasaki, M. Org. Lett.
2008, 10, 2275.
(11) (a) Fuwa, H.; Kaneko, A.; Sugimoto, Y.; Tomita, T.; Iwatsubo, T.;
Sasaki, M. Heterocycles 2006, 70, 101. (b) Fuwa, H.; Sasaki, M. Org. Biomol.
Chem. 2007, 5, 1849. (c) Fuwa, H.; Sasaki, M. Chem. Commun. 2007, 2876;
Chem. Commun. 2007, 3106 (Additions and Corrections). (d) Fuwa, H.; Sasaki,
M. Org. Lett. 2007, 9, 3347. (e) Fuwa, H.; Sasaki, M. Org. Lett. 2008, 10, 2549.
(f) Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M. Angew. Chem., Int. Ed. 2008, 47,
4737.
Synthesis of Imide-Derived Enol Phosphates. Imide-derived
enol phosphates were synthesized starting from commercially
available o-haloanilides (Scheme 2). Thus, anilides 6a-c were
reacted with Boc2O/DMAP in THF at rt to deliver imides
1a-c.24 Treatment of 1a-c with KHMDS in the presence of
(PhO)2P(O)Cl afforded enol phosphates 2a-c. These phosphates
were stable enough to be isolated and purified by rapid flash
(16) For recent examples, see: (a) Kher, S.; Lake, K.; Sircar, I.; Pannala,
M.; Bakir, F.; Zapf, J.; Xu, K.; Zhang, S. H.; Liu, J. P.; Morera, L.; Sakurai, N.;
Jack, R.; Cheng, J. F. Bioorg. Med. Chem. Lett. 2007, 17, 4442. (b) Dykstra,
K. D.; Guo, L. Q.; Birzin, E. T.; Chan, W. D.; Yang, Y. T.; Hayes, E. C.; DaSilva,
C. A.; Pai, L. Y.; Mosley, R. T.; Kraker, B.; Fitzgerald, P. M. D.; DiNinno, F.;
Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem. Lett. 2007,
17, 2322. (c) Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K. Bioorg. Med.
Chem. 2006, 14, 857. (d) Shaw, D.; Chicchi, G. G.; Elliott, J. M.; Kurtz, M.;
Morrison, D.; Ridgill, M. P.; Szeto, N.; Watt, A. P.; Williams, A. R.; Swain,
C. J. Bioorg. Med. Chem. Lett. 2001, 11, 3031. (e) Cooper, L. C.; Chicchi, G. G.;
Dinnell, K.; Elliott, J. M.; Hollingworth, G. J.; Kurtz, M. M.; Locker, K. L.;
Morrison, D.; Shaw, D. E.; Tsao, K. L.; Watt, A. P.; Williams, A. R.; Swain,
C. J. Bioorg. Med. Chem. Lett. 2001, 11, 1233. (f) Dinnell, K.; Chicchi, G. G.;
Dhar, M. J.; Elliott, J. M.; Hollingworth, G. J.; Kurtz, M. M.; Ridgill, M. P.;
Rycroft, W.; Tsao, K. L.; Williams, A. R.; Swain, C. J. Bioorg. Med. Chem.
Lett. 2001, 11, 1237.
(12) For leading reviews on palladium(0)-catalyzed synthesis of heterocycles: (a)
Zeni, G.; Larock, R. C. Chem. ReV. 2006, 106, 4644. (b) Humphrey, G. R.;
Kuethe, J. T. Chem. ReV. 2006, 106, 2875. (c) Cacchi, S.; Fabrizi, G. Chem.
ReV. 2005, 105, 2873.
(13) For a preliminary report of this work, see ref 11d.
(14) Recently,
a very similar synthesis of N-aryl enecarbamates has
appeared: Cottineau, B.; Gillaizeau, I.; Farard, J.; Auclair, M.-L.; Coudert, G.
Synlett 2007, 1925.
(15) For recent reviews of indole-containing natural products, see: (a) Somei,
M.; Yamada, F. Nat. Prod. Rep. 2004, 21, 278. (b) Somei, M.; Yamada, F. Nat.
Prod. Rep. 2005, 22, 73. (c) Kawasaki, T.; Higuchi, K. Nat. Prod. Rep. 2005,
22, 761. (d) O’Connor, S. E.; Maresh, J. J. Nat. Prod. Rep. 2006, 23, 532.
(17) (a) Fischer, E.; Jordan, F. Chem. Ber. 1883, 16, 2241. (b) Fischer, E.;
Hess, O. Chem. Ber. 1884, 17, 551.
(18) Reissert, A. Chem. Ber. 1897, 30, 1030.
(19) Madelung, W. Chem. Ber. 1912, 45, 1128.
(20) (a) Bischler, A. Chem. Ber. 1892, 25, 2860. (b) Mo¨hlau, R. Chem. Ber.
1882, 15, 2480.
J. Org. Chem. Vol. 74, No. 1, 2009 213