Page 5 of 7
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
ARTICLE
3678; (g) H. Wang, H. Huang, Transition-Metal-Catalyzed
Redox-Neutral and Redox-Green C–H Bond Functionalization
Chem. Rec. 2016, 16, 1807–1818; (h) Y. Park, K. Kim, S.
Chang, Transition Metal-Catalyzed C−H Amination: Scope,
Mechanism, and Applications, Chem. Rev. 2017, 117,
9247−9301; (i) B. Zhao, Z. Shi, Z. Y. Yuan, Transition-metal-
catalyzed Chelation-assisted C–H Functionalization of
Aromatic Substrates, Chem. Rec. 2016, 16, 886–896; (j) Y. Y.
Jiang, X. Man, S. Bi, Advances in Theoretical Study on
Transition-Metal-Catalyzed C−H, Sci China Chem. 2016, 59,
1448–1466. (k) M. Bera, S. Agasti, R. Chowdhury, R. Mondal,
D. Pal, D. Maiti, Rhodium-Catalyzed meta-C–H
Functionalization of Arenes. Angew. Chem. Int. Ed. 2017, 56,
5272–5276. (l) U. Dutta, S. Maiti, S. Pimparkar, S. Maiti, L. R .
Gahan, E. H. Krenske, D. W. Lupton, D, Maiti, Rhodium
catalyzed template-assisted distal para C–H olefination,
Chem. Sci, 2019, 10, 7426–7432. (m) S. Porey, X. Zhang, S.
Bhowmick, V. K. Singh, S. Guin, R. S. Paton, D. Maiti, Alkyne
Linchpin Strategy for Drug:Pharmacophore Conjugation:
Experimental and Computational Realization of a Meta-
Selective Inverse Sonogashira Coupling, J. Am. Chem. Soc.
2020, 142, 3762−3774. (n) A. Maji, A. Dahiya, G. Lu, T.
Bhattacharya, M. Brochetta, G. Zanoni, P. Liu, D. Maiti, H-
bonded reusable template assisted para selective
ketonisation using soft electrophilic vinyl ethers. Nature
Communications, 2018, 9, 3582−3591.
(a) F. Wang, Z, Qi, Y. Zhao, S. Zhai, G. Zheng, R, Mi, Z. Huang,
X. Zhu, X. He, X. Li, Rhodium(III)-Catalyzed Atroposelective
Synthesis of Biaryls by C–H Activation and Intermolecular
Coupling with Sterically HinderedAlkynes, Angew. Chem. Int.
Ed. 2020, 59, 13288–13294; (b) L. Ackermann, A. V. Lygin, N,
Hofmann, Ruthenium-Catalyzed Oxidative Annulation by
Cleavage of C–H/N–H Bonds, Angew. Chem. Int. Ed. 2011, 50,
6379–6382; (c) D. Kalsi, S. Dutta, N. Barsu, M. Rueping, B.
Sundararaju, Room-Temperature C−H Bond Functionalization
by Merging Cobalt and Photoredox Catalysis, ACS Catal. 2018,
8, 8115−8120; (d) Y. Zhao, C. Shi, X. Su and W. Xia, Synthesis
of Isoquinolones by Visible-Lightinduced Deaminative [4+2]
Annulation Reactions, Chem. Commun. 2020, 56, 5259—
5262; (e) N. Sharma, R. Saha, N. Parveen, G. Sekar,
Palladium-Nanoparticles-Catalyzed Oxidative Annulation of
Benzamides with Alkynes for the Synthesis of Isoquinolones,
Adv. Synth. Catal. 2017, 359, 1947–1958; (f) T. K. Hyster, T.
Rovis, Rhodium-Catalyzed Oxidative Cycloaddition of
Benzamides and Alkynes via C–H/N–H Activation, J. Am.
Chem. Soc. 2010, 132, 10565–10569; (g) N. Muniraj, A.
Kumar and K. R. Prabhu, Cobalt-Catalyzed Regioselective
[4+2] Annulation/ Lactonization of Benzamides with 4-
Hydroxy-2-Alkynoates under Aerobic Conditions, Adv. Synth.
Catal. 2020, 362, 152–159; (h) M. I. Antczak, J. M. Ready,
Two-, Three- and Four-Component Coupling to Form
Isoquinolones Based on Directed Metalation, Chem. Sci.
2012, 3, 1450–1454; (i) G. Cera, T. Haven, L. Ackermann,
Iron-Catalyzed C–H/N–H Activation by Triazole Guidance:
Versatile Alkyne Annulation, Chem. Commun. 2017, 53,
6460—6463; (j) S. Kathiravan, I. A. Nicholls, Cobalt Catalyzed,
Regioselective C(sp2)−H Activation of Amides with 1,3-
Diynes, Org. Lett. 2017, 19, 4758−4761; (k) R. Manoharan, M.
Jeganmohan, Cobalt-Catalyzed Cyclization of Benzamides
with Alkynes: A Facile Route to Isoquinolones with Hydrogen
Evolution, Org. Biomol. Chem. 2018, 16, 8384–8389; (l) C.
Zhang, X. M. Chen, Y. Luo, J. L. Li, M. Chen, L. Hai, Y. Wu,
Imidazolium-Based Ionic Liquid: An Efficient, Normalized,
and Recyclable Platform for Rh(III)-Catalyzed Directed C−H
Carbenoid Coupling Reactions, ACS Sustainable Chem. Eng.
2018, 6, 13473−13479.
14368; (b) D. S. Deshmukh, N. GanDgOwIa: 1r0, .1B0.39M/D.0OBhB0a2n3a8g9eB,
Rapid and Atom Economic Synthesis of Isoquinolines and
Isoquinolinones by C–H/N–N Activation Using
a
Homogeneous Recyclable Ruthenium Catalyst in PEG Media,
Eur. J. Org. Chem. 2019, 18, 2919–2927; (c) W. G. Shuler, E. A.
Smith, S. M. Hess, T. M. C. McFadden, C. R. Metz, D. G.
VanDerveer, W. T. Pennington, P. J. Mabe, S. L. Knick, C. F.
Beam, Preparation and X-Ray Crystal Structure of 3-(4-
(Dimethylamino)phenyl)-2-(phenylamino)isoquinolin-1(2H)-
one,3-(4-Methoxyphenyl)-2-(phenylamino)isoquinolin-1(2H)-
one,
and
2-Methyl-N’-(4-methylbenzoyl)-N’–
phenylbenzohydrazide from Polylithiated 2-methylbenzoic
Acid Phenylhydrazide and Methyl 4-dimethylaminobenzoate,
Methyl 4-methoxybenzoate, or Methyl 4-methylbenzoate, J.
Chem. Crystallogr. 2012, 42, 952–959; (d) V. R. Batchu, D. K.
Barange, D. Kumar, B. R. Sreekanth, K. Vyas, E. A. Reddy, M.
Pal, Tandem C–C coupling intramolecular acetylenic Schmidt
reaction under Pd/C–Cu catalysis, Chem. Commun. 2007, 19,
1966–1968; (e) R. K. Arigela, R. Kumar, T. Joshi, R. Mahar, B.
Kundu, Ruthenium(II)-Catalyzed C–H Activation/C–N Bond
Formation via in Situ Generated Iminophosphorane as the
Directing Group: Construction of Annulated Pyridin-2(1H)-
ones, RSC. Adv. 2014, 4, 57749–57753; (f) T. Yang, X. Fan, X.
Zhao, W. Yu, Iron-Catalyzed Acyl Migration of Tertiary
α-Azidyl Ketones: Synthetic Approach toward Enamides and
Isoquinolones, Org. Lett. 2018, 20, 1875−1879; (g) T. Yang, Y.
Lin, C. Yang, W. Yu, Iron-Catalysed 1,2-Acyl Migration of
Tertiary α-Azido Ketones and 2-Azido-1,3-Dicarbonyl
Compounds, Green Chem. 2019, 21, 6097–6102; (h) T. Miura,
M. Yamauchi, M. Murakami, Synthesis of 1(2H)-
Isoquinolones by the Nickel-Catalyzed Denitrogenative
Alkyne Insertion of 1,2,3-Benzotriazin-4(3H)-ones, Org. Lett.
2008, 10, 3085–3088; (i) M. J. Wu, L. J. Chang, L. M. Wei, C. F.
Lin, A Direct Anionic Cyclization of 2-Alkynylbenzonitrile to 3-
Substituted-1(2H)-isoquinolones and 3-Benzylideneisoindol-
2-ones Initiated by Methoxide Addition, Tetrahedron. 1999,
55, 13193–13200; (j) M. S. Mayo, X. Yu, X. Feng, Y.
Yamamoto, M. Bao, Isoquinolone Synthesis through SNAr
Reaction of 2-Halobenzonitriles with Ketones Followed by
Cyclization, J. Org. Chem. 2015, 80, 3998−4002; (k) D. B.
Khadka, S. H. Yang, S. H. Cho, C. Zhao, W. Cho, Synthesis of
12-Oxobenzo[c]phenanthridinones and 4-Substituted 3-
5
Arylisoquinolones
via
Vilsmeier–Haack
Reaction,
Tetrahedron. 2012, 68, 250–261; (l) W. D. Lu, C. F. Lin, C. J.
Wang, S. J. Wang, M. J. Wu, Substituent Effect on Anionic
Cycloaromatization of 2-(2-Substituted Ethynyl)benzonitriles
and Related Molecules, Tetrahedron, 2002, 58, 7315–7319;
(m) Q. Zhen, L. Chen, L. Qi, K. Hu, Y. Shao, R. Li, J. Chen,
Nickel-Catalyzed Tandem Reaction of Functionalized
Arylacetonitriles with Arylboronic Acids in 2-Me THF: Eco-
FriendlySynthesis of Aminoisoquinolines and Isoquinolones,
Chem. Asian J. 2020, 15, 106–111; (n) T. Sakamoto, Y. Kondo,
H. Yamanaka, Condensed Heteroaromatic Ring Systems. III.
Synthesis of Naphthyridine Derivatives by Cyclization of
Ethynylpyridinecarboxamides, Chem. Pharm. Bull. 1985, 33,
626–633.
7
8
(a) Z. Yang, L. Jie, Z. Yao, Z. Yang and X. Cui, Rhodium(III)-
Catalyzed Synthesis of N-(2-Acetoxyalkyl)isoquinolones from
Oxazolines and Alkynes through C−N BondFormation and
Ring-Opening, Adv. Synth. Catal. 2019, 361, 214–218; (b) G. S
Kumar, N. P. Khot and M. Kapur, Oxazolinyl-Assisted Ru(II)-
Catalyzed C−H Functionalization Based on Carbene Migratory
Insertion: A One-Pot Three-Component Cascade Cyclization,
Adv. Synth. Catal. 2019, 361, 73–78.
6
(a) B. Yu, Y. Chen, M. Hong, P. Duan, S. Gan, H. Chao, Z. Zhao,
J. Zhao, Rhodium-Catalyzed C–H Activation of Hydrazines
(a) N. Umeda, K.Hirano, T. SatohJ, N. Shibata, H, Sato and M.
Miura, Rhodium-Catalyzed Oxidative 1:1, 1:2, and 1:4
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-4 | 5
Please do not adjust margins