6638
K. Glegoła et al. / Tetrahedron Letters 49 (2008) 6635–6638
7. (a) Bauer, T.; Tarasiuk, J.; Pasnicek, K. Tetrahedron: Asymmetry 2002, 13, 77–82;
(b) Emmerson, D. P. G.; Villard, R.; Mugnaini, C.; Batsanov, A.; Howard, J. A. K.;
Hems, W. P.; Tooze, R. P.; Davis, B. G. Org. Biomol. Chem. 2003, 1, 3826–3838; (c)
Emmerson, D. P. G.; Hems, W. P.; Davis, B. G. Tetrahedron: Asymmetry 2005, 16,
213–221; (d) Emmerson, D. P. G.; Hems, W. P.; Davis, B. G. Org. Lett. 2006, 8,
207–210.
139.1 (d, J = 18.6 Hz), 137.8 (d, J = 21.9 Hz), 136.3 (d, J = 5.0 Hz), 136.2 (d, J = 5.6
Hz), 134.0 (d, J = 3.7 Hz), 133.9, 133.6 (d, J = 6.2 Hz), 131.1, 129.3, 128.9 (d,
J = 5.6 Hz), 128.7 (d, J = 10.4 Hz), 128.6 (d, J = 3.7 Hz), 127.9 (d, J = 5.0 Hz), 92.9,
73.0, 72.6, 72.5, 67.9, 61.6, 20.8, 20.7, 20.6, 20.3; 31P NMR (121 MHz, CDCl3,
298 K): d ꢂ15.7. Anal. Calcd for C33H34NO9P: C, 63.97; H, 5.53. Found: C, 63.88;
H, 5.48.
8. (a) Beller, M.; Krauter, J. G. E.; Zapf, A. Angew. Chem., Int. Ed. 1997, 36, 772–774;
(b) Kolodziuk, R.; Penciu, A.; Tollabi, M.; Framery, E.; Goux-Henry, C.;
Iourtchenko, A.; Sinou, D. J. Organomet. Chem. 2003, 687, 384–391; (c)
Konovets, A.; Penciu, A.; Framery, E.; Percina, N.; Goux-Henry, C.; Sinou, D.
Tetrahedron Lett. 2005, 46, 3205–3208.
9. (a) Yonehara, K.; Mori, K.; Hashizume, T.; Chung, K.-G.; Ohe, K.; Uemura, S. J.
Organomet. Chem. 2000, 603, 40–49; (b) Mata, Y.; Dieguez, M.; Pamies, O.;
Claver, C. Org. Lett. 2005, 7, 5597–5599; (c) Mata, Y.; Pamies, O.; Dieguez, M.
Chem. Eur. J. 2007, 13, 3296–3304.
10. (a) Tsuji, J. In Palladium Reagents and Catalysis. Innovations in Organic Synthesis;
Wiley-VCH: New York, 1995; (b) Trost, B. M.; Van Vranken, D. L. Chem.
Rev 1996, 96, 395–422; (c) Johannsen, M.; Jorgensen, K. A. Chem. Rev. 1998,
98, 1689–1708; (d) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin,
1999; Vol. 2,. Chapter 24 (e) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103,
2921–2943.
20. General procedure for the synthesis of phosphine-amine ligands 11: The
phosphine-imine derivative 10 (86
methanol (2.5 mL) and acetic acid (0.25 mL). NaBH3CN (42 mg, 650
l
mol) was dissolved in
a
mixture of
mol) was
l
added to the previous solution, and the mixture was stirred at room
temperature for 15 min before adding water (50 mL) in order to stop the
reaction. The aqueous phase was extracted with CH2Cl2 (3 ꢀ 50 mL), and the
combined organic phase was washed with a saturated solution of NaHCO3 and
then of brine, dried with Na2SO4, and concentrated. The phosphine-amine
compound 11 was obtained in quantitative yield without further purification.
Data for ligand 11a: white solid; Rf (CH2Cl2/MeOH, 30:1) = 0.63; ½a D25
ꢁ
+20.2 (c
1.0, CHCl3); 1H NMR (300 MHz, CDCl3, 298 K): d 7.41 (ddd, J = 7.7, 4.5, 1.0 Hz,
1H), 7.35–7.30 (m, 7H), 7.23–7.11 (m, 5H), 6.82 (ddd, J = 7.6, 4.5, 1.2 Hz, 1H),
5.53 (d, J = 8.6 Hz, 1H), 5.09 (dd, J = 9.2, 9.0 Hz, 1H), 5.05 (dd, J = 9.6, 9.2 Hz, 1H),
4.29 (dd, J = 12.5, 4.5 Hz, 1H), 4.05 (dd, J = 12.4, 1.9 Hz), 4.01 (br s, 2H), 3.75
(ddd, J = 9.6, 4.5, 1.9 Hz, 1H), 2.94 (dd, J = 9.0, 8.6 Hz, 1H), 2.10 (s, 3H), 2.09 (s,
3H), 2.04 (s, 3H), 2.02 (s, 3H); 13C NMR (75 MHz, CDCl3, 298 K): d 171.2, 171.1,
170.0, 169.6, 144.6 (d, J = 23.6 Hz) 136.8 (d, J = 9.9 Hz), 136.7 (d, J = 9.8 Hz),
135.5 (d, J = 13.7 Hz), 134.3 (d, J = 4.4 Hz), 134.0 (d, J = 4.9 Hz), 133.8, 129.5,
129.2 (d, J = 6.0 Hz), 129.1 (d, J = 6.6 Hz), 127.8, 95.4, 74.2, 72.8, 68.7, 62.1, 61.2,
50.8 (d, J = 23.6), 21.1, 21.0, 20.7, 20.5; 31P NMR (121 MHz, CDCl3, 298 K): d
ꢂ14.9; HRMS (ESI): m/z calcd for C33H36NO9PNa [M+Na]+ 644.2025, found
644.2032.
11. Glaser, B.; Kunz, H. Synlett 1998, 53–55.
12. (a) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. Chem. Commun.
1999, 415–416; (b) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. J.
Org. Chem. 1999, 64, 9374–9380; (c) Hashizume, T.; Yonehara, K.; Ohe, K.;
Uemura, S. J. Org. Chem. 2000, 65, 5197–5201.
13. Mata, Y.; Dieguez, M.; Pamies, O.; Claver, C. Adv. Synth. Catal. 2005, 347, 1943–
1947.
21. Myszka, H.; Bednarczyk, D.; Najder, M.; Kaca, W. Carbohydr. Res. 2003, 338,
133–141.
14. Mata, Y.; Claver, C.; Dieguez, M.; Pamies, O. Tetrahedron: Asymmetry 2006, 17,
3282–3287.
22. Billing, J. F.; Nilsson, U. J. Tetrahedron 2005, 61, 863–874.
15. (a) Tollabi, M.; Framery, E.; Goux-Henry, C.; Sinou, D. Tetrahedron: Asymmetry
2003, 14, 3329–3333; (b) Glegola, K.; Framery, E.; Goux-Henry, C.;
Pietrusiewicz, K. M.; Sinou, D. Tetrahedron 2007, 63, 7133–7141.
16. Johannesen, S. A.; Petersen, B. O.; Duus, J. O.; Skrydstrup, T. Inorg. Chem. 2007,
46, 4326–4335.
23. General procedure for the allylic alkylation: In a Schlenk tube, [(
(8.8 mg, 24 mol) and the ligand (48 mol or 96 mol) were dissolved in THF
g
3-C3H5)PdCl]2
l
l
l
(1 mL). After being stirred for 1 h at 25 °C, a solution of racemic (E)-1,3-
diphenyl-2-propenyl acetate (302 mg, 1.2 mmol) and I THF (1 mL) was added.
After 30 min, this solution was transferred to
dimethyl malonate (475 mg, 3.6 mmol), BSA (732 mg, 3.6 mmol), and KOAc
(2.5 mg, 24 mol) in THF (2 mL). The reaction mixture was stirred at the
a Schlenk tube containing
17. Johannesen, S. A.; Glegola, K.; Sinou, D.; Framery, E.; Skrydstrup, T. Tetrahedron
Lett. 2007, 48, 3569–3573.
l
18. (a) Brunner, H.; Schönherr, M.; Zabel, M. Tetrahedron: Asymmetry 2001, 12,
2671–2675; (b) Brunner, H.; Schönherr, M.; Zabel, M. Tetrahedron: Asymmetry
2003, 14, 1115–1122; (c) Borriello, C.; Cucciolito, M. E.; Panunzi, A.; Ruffo, F.
Inorg. Chim. Acta 2003, 353, 238–244.
desired temperature for 24 h. The conversion was determined by GC analysis.
The mixture was then diluted with diethyl ether (15 mL) and water (5 mL). The
organic phase was washed brine and dried over MgSO4. Evaporation of the
solvents gave a residue, which was purified by chromatography (petroleum
ether/ethyl acetate, 10/1). The enantiomeric excess of dimethyl [(E)-1,3-
diphenyl-prop-2-en-1-yl]malonate was determined by HPLC analysis: tR
18 min for (R)-isomer and tS 24 min for (S)-isomer. The absolute
configuration of the enantiomers was determined by comparison of the
retention times with that of an authentic sample23 and by measurement of the
optical rotation of the product. Colorless oil; Rf (Et2O/EtOAc, 10:1) = 0.40; 1H
NMR (300 MHz, CDCl3, 298 K): d 7.28–7.20 (m, 10H), 6.50 (d, J = 15.6 Hz, 1H),
6.34 (dd, J = 15.6, 8.5 Hz, 1H), 4.29 (dd, J = 10.9, 8.5 Hz, 1H), 3.95 (d, J = 10.9 Hz,
1H), 3.72 (s, 3H), 3.53 (s, 3H). The 1H NMR spectrum is in agreement with the
literature (see Ref. 25).
19. General procedure for the synthesis of phosphine-imine ligands 10: The gluco-
pyranoside derivative
9 (0.35 mmol), 2-diphenylphosphinobenzaldehyde
(102 mg, 0.35 mmol) and toluene (5 mL) were added to dried MgSO4 under
an inert atmosphere. The reactional mixture was stirred at 60 °C for 12 h. After
concentration, the residue was purified by flash chromatography to give
phosphine-imine derivatives 10. Data for ligand 10a: Pale yellow solid (yield
85%); Rf (CH2Cl2/MeOH, 30:1) = 0.70; ½ ꢁ
a 2D5 +25.8 (c 1.0, CHCl3); 1H NMR
(300 MHz, CDCl3, 298 K): d 9.04 (d, J = 4.9 Hz, 1H), 7.95 (dd, J = 6.8, 4.0 Hz, 1H),
7.42–7.15 (m, 12H); 6.94–6.90 (m, 1H), 5.85 (d, J = 8.4 Hz, 1H), 5.36 (dd, J = 9.4,
9.4 Hz, 1H), 5.10 (dd, J = 10.2, 9.4 Hz, 1H), 4.35 (dd, J = 12.4, 4.5 Hz, 1H), 4.13
(dd, J = 12.1, 1.9 Hz, 1H), 3.93 (ddd, J = 10.2, 4.5, 1.9 Hz, 1H), 3.46 (dd, J = 9.4,
8.4 Hz, 1H), 2.08 (s, 3H), 2.01 (s, 3H), 1.83 (s, 3H), 1.70 (s, 3H); 13C NMR
(75 MHz, CDCl3, 298 K): d 170.7, 169.8, 169.7, 168.8, 163.8 (d, J = 25.4 Hz),
24. Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769–1772.
25. Vyskocil, S.; Smrcina, M.; Hanus, V.; Polasek, M.; Kocovsky, P. J. Org. Chem.
1998, 63, 7738–7748.