6542
P. Rajakumar, S. Raja / Tetrahedron Letters 49 (2008) 6539–6542
dendritic architectures with various substituents through click
chemistry and their biological properties are currently under
investigation.
Acknowledgments
The authors thank UGC, New Delhi, for financial assistance and
DST-FIST for providing NMR facilities to the department. SR thanks
UGC for a fellowship.
References and notes
1. Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681.
2. Gillies, E. R.; Jonsson, T. B.; Frec´het, J. M. J. J. Am. Chem. Soc. 2004, 126, 11936.
3. Furumi, S.; Otomo, A.; Yokoyama, S.; Mashiko, S. Thin Solid Films 2003, 438, 85.
4. Zhang, W.; Xie, J.; Shi, W. Eur. Polym. J. 2007, 43, 2387.
5. Kwak, G.; Choi, J. U.; Seo, K. H.; Park, L. S.; Hyun, S. H.; Kim, W. S. Chem. Mater.
2007, 19, 2898.
6. Kay, K. Y.; Han, K. J.; Yu, Y. J.; Park, Y. D. Tetrahedron Lett. 2002, 43, 5053.
7. Matsuda, K.; Irie, M. J. Am. Chem. Soc. 2000, 122, 7195.
Figure 3. Photoisomerization of dendrimer 4 in CHCl3 (1 Â 10À5 M).
8. Liao, L. X.; Junge, D. M.; McGrath, D. V. Macromolecules 2002, 35, 319.
9. Stevens, J. F.; Taylor, A. W.; Nickerson, G. B.; Ivancic, M.; Henning, J.; Haunold,
A.; Deinzer, M. L. Phytochemistry 2000, 53, 759.
10. Dimmock, R. J.; Kandepu, N. M.; Hetherington, M.; Quail, J. W.; Pugazhenthi, U.;
Sudom, A. M.; Chamankhah, M.; Rose, P.; Pass, E.; Allen, T. M.; Halleran, S.;
Szydlowski, J.; Mutus, B.; Tannous, M.; Manavathu, E. K.; Myers, T. G.; Clercq, O.
E. D.; Balzarini, O. J. J. Med. Chem. 1998, 41, 1014.
11. Cioffi, G.; Escobar, L. M.; Braca, A.; De Tommasi, N. J. Nat. Prod. 2003, 66, 1061.
12. Nielson, S. F.; Larsen, M.; Boesen, T.; Schønning, K.; Kromann, H. J. Med. Chem.
2005, 48, 2667.
13. Akihisa, T. S.; Tokuda, H.; Hasegawa, D.; Ukiya, M.; Kimura, Y.; Enjo, F.; Suzuki,
T.; Nishino, H. J. Nat. Prod. 2006, 69, 38.
14. Cotelle, N.; Hapiot, P.; Pinson, J.; Ronaldo, C.; Vézin, H. J. Phys. Chem. B 2005,
109, 23720.
15. Tao, X. T.; Watanabe, T.; Kono, K.; Deguchi, T.; Nakayama, M.; Miyata, S. Chem.
Mater. 1996, 8, 1326.
16. Rurack, K.; Bricks, J. L.; Reck, G.; Radeglia, R.; Resch-Genger, U. J. Phys. Chem. A
2000, 104, 3087.
17. Subramanian, K.; Krishnasamy, V.; Nanjundan, S.; Rami Reddy, A. V. Eur. Polym.
J. 2000, 36, 2343.
18. Cho, M. J.; Kim, G. W.; Jun, W. G.; Lee, S. K.; Jin, J.; Choi, D. H. Thin Solid Films
2006, 500, 52.
19. Rajakumar, P.; Ganesan, K.; Jayavelu, S.; Murugesan, K. Synthesis 2006, 3, 528.
20. Liu, P.; Chen, Y.; Deng, J.; Tu, Y. Synthesis 2001, 14, 2078.
21. Wattanasin, S.; Murphy, W. S. Synthesis 1980, 8, 647.
Figure 4. DSC curves of dendritic structures 1, 2, 3, and 4.
22. Dendron 8: Yield 83%, 65%, mp 165 °C (dec); 1H NMR (300 MHz, DMSO-d6): d
5.18 (s, 4H); 6.86 (s, 2H); 7.16 (d, 4H, J = 8.7 Hz); 7.45 (m, 7H); 7.71 (d, 2H,
J = 15.6); 7.87 (d, 4H, J = 3.6 Hz); 7.94 (d, 2H, J = 15.6); 8.17 (d, 4H, J = 8.4 Hz);
9.67 (s, 1H): 13C NMR (75 MHz, DMSO-d6): d 69.3, 113.9, 114.8, 117.2, 122,
128.7, 128.8, 130.4, 130.6, 130.9, 134.8, 138.2, 143.1, 157.6, 162.3, 187.3; MS
(EI, 70 eV): m/z 566 (M+). Elemental Anal. Calcd for C38H30O5: C, 80.55; H, 5.34.
Found: C, 80.42; H, 5.21.
cis–trans isomerization. Figure 3 shows the UV–vis spectral
changes of dendrimer 4 on UV irradiation. This dendrimer under-
goes cis–trans isomerization as revealed by the decrease in the
absorbance28 and appearance of an isosbestic point at 285 nm. A
photostationary state was attained within 660 s during which time
most of the trans chalcone moieties were converted to the cis iso-
mer. Similarly, dendritic architectures 1, 2, and 3 also underwent
cis–trans isomerization.
The thermal behaviors of the dendritic structures 1, 2, 3, and 4
were investigated through differential scanning calorimetry (DSC),
and the results are shown in Figure 4. All the compounds were
found to possess high thermal stability and decomposed above
300 °C. The glass transition temperatures (Tg) improved from
63 °C to 99 °C with an increase in the number of chalcone units
in dendritic structures 1 and 2. The Tg values could not be obtained
clearly for dendrimers 3 and 4 due to the incorporation of more
chalcone units in the dendritic structures. Among the dendrimers,
only 2 showed an isotropic curve at 180.06 °C (Fig. 4), which indi-
cates that the compound might exhibit liquid crystalline (LC) prop-
23. Závada, J.; Pánková, M.; Holy´, P.; Tichy´, M. Synthesis 1994, 11, 1132.
24. Dendrimer 1: Yield 95%; mp 142 °C (dec); 1H NMR (300 MHz, CDCl3): d 2.50 (s,
9H); 5.23 (s, 6H); 7.14 (d, 6H, J = 8.4 Hz); 7.44 (m, 9H); 7.58 (d, 3H, J = 15.6 Hz);
7.67 (d, 6H, J = 3.9 Hz); 7.84 (d, 3H, J = 15.6 Hz); 8.11 (d, 6H, J = 8.1 Hz): 13C
NMR (75 MHz, CDCl3): d 16.0, 65.2, 114.5, 121.9, 128.4, 128.9, 130.4, 130.9,
131.4, 131.5, 135.1, 139.6, 144.1, 162.9, 188.7; MS (EI, 70 eV): m/z 828 (M+).
Elemental Anal. Calcd for C57H48O6: C, 82.58; H, 5.84. Found: C, 82.70; H, 5.97.
25. Dendrimer 2: Yield 73%; mp 125 °C (dec); 1H NMR (300 MHz, CDCl3): d 2.36 (s,
9H); 5.05 (s, 18H); 6.96 (m, 18H); 7.05 (s, 3H); 7.30 (s, 18H); 7.44 (d, 6H,
J = 15.6 Hz); 7.52 (s, 12H); 7.70 (d, 6H, J = 15.9 Hz); 7.94 (d, 12H, J = 7.8 Hz): 13C
NMR (75 MHz, CDCl3): d 16.0, 65.1, 69.8, 113.3, 114.7, 118.8, 121.8, 128.4,
128.9, 130.4, 130.8, 131.5, 131.6, 135.0, 138.5, 139.4, 144.1, 159.7, 162.4,
188.6; (FAB-MS): m/z 1854 (M+). Elemental Anal. Calcd for C126H102O15: C,
81.53; H, 5.54. Found: C, 81.44; H, 5.41.
26. Dendrimer 3: Yield 83%; mp 185 °C (dec); 1H NMR (300 MHz, CDCl3): d 5.34 (s,
12H); 6.97 (d, 12H, J = 8.7 Hz); 7.35-7.37 (m, 18H); 7.44 (d, 6H, J = 15.6 Hz);
7.54–7.57 (m, 12H); 7.73 (d, 6H, J = 15.6 Hz); 7.96 (d, 12H, J = 9.0 Hz): 13C NMR
(75 MHz, CDCl3): d 63.9, 114.4, 121.5, 128.4, 128.9, 130.4, 130.9, 132.0, 134.9,
137.8, 144.4, 161.8, 188.5; (FAB-MS): m/z 1494 (M+). Elemental Anal. Calcd for
C102H78O12: C, 81.91; H, 5.26. Found: C, 81.75; H, 5.13.
erties. Though dendrimer
4 has structural similarity with
dendrimer 2, an isotropic curve was not observed due to its decom-
position at high temperature.
27. Dendrimer 4: Yield 69%; mp 210 °C (dec); 1H NMR (300 MHz, CDCl3): d 4.86 (s,
24H); 5.24 (s, 12H); 6.81–6.88 (m, 36H); 6.98 (s, 6H); 7.27 (s, 36H); 7.37 (d,
12H, J = 15.6 Hz); 7.48 (s, 24H); 7.65 (d, 12H, J = 15.6 Hz); 7.86 (d, 24H,
J = 8.4 Hz): 13C NMR (75 MHz, CDCl3): d 64.1, 69.6, 113.5, 114.5, 119.4, 121.6,
128.4, 128.9, 130.4, 130.8, 131.5, 135.0, 138.0, 138.6, 144.2, 159.0, 162.2,
188.4; (FAB-MS): m/z 3548 (M+). Elemental Anal. Calcd for C240H186O30: C,
81.20; H, 5.28. Found: C, 81.44; H, 5.43.
In summary, we have synthesized several chalcone-based den-
dritic structures and have studied their optical and thermal prop-
erties. The incorporation of increased numbers of chalcone units
at the peripheries of the dendritic architectures had significant
effects on improving the morphology. Syntheses of chalcone
28. Rajakumar, P.; Dhanasekaran, M.; Selvam, S. Synthesis 2006, 8, 1257.