3508
Y. Ju-Nam et al. / Journal of Organometallic Chemistry 693 (2008) 3504–3508
2.72 (2H,t), 3.68 (2H,m), 7.6–7.8 (15H,m) ppm. MALDI-TOF accu-
rate mass analysis. Found 421.1742 [M+]; cation C26H30OPS re-
quires 421.1755 [M+].
methane and final trituration with diethyl ether. 82% yield. d31P
NMR (CDCl3) = 31.93 ppm; d1H NMR (CDCl3) = 1.86–2.09 (4H,m),
2.28–2.40 (4H,m), 2.66 (4H,t), 7.40–7.50 (10H,m) ppm, 7.67–7.75
(10H,m). MALDI-TOF accurate mass analysis. Found 551.13746
[M+H+]; cation (C30H32O2P2S2 + H) requires 551.13973 [M+H+].
4.2.3. Reduction and in situ methylation of (3-
thioacetylpropyl)triphenylphosphonium bromide
Acknowledgement
(3-Thioacetylpropyl)triphenylphosphonium bromide (5), (0.5
mmol) was dissolved in methanol (3 cm3). A freshly prepared
aqueous solution of sodium borohydride (5 mmol) was then added
dropwise to the reaction flask, in order to allow formation of the
zwitterion Ph3P+(CH2)3SÀ. The mixture was stirred for 3 h at room
temperature, and then iodomethane (5 mmol) was added. The
resulting mixture was then stirred overnight. Progress of the reac-
tion was monitored by TLC, using methanol–dichloromethane
(10:90% v/v) as a mobile phase. The resulting mixture was treated
with an excess of aqueous potassium iodide solution and then ex-
tracted with dichloromethane, the organic phase was collected and
after removing the solvent, the resulting solid was initially purified
by trituration with dry diethylether to give 3-(methylthiopro-
pyl)triphenylphosphonium iodide (7), identical with the com-
pound isolated previously from the analogous reduction/
methylation of triphenylphosphoniopropylthiosulfate [7]. M.p.
136–138 °C. d31P NMR (CDCl3) = 24.3 ppm; d1H NMR (CDCl3) = 1.9
(3H,s), 2.8 (2H,t), 3.3 (2H,m), 3.8 (2H,m), 7.6–7.8 (15H,m) ppm.
MALDI-TOF accurate mass analysis. Found 351.1342 [M+]; cation
C22H24PS requires 351.1312 [M+].
We are grateful to Sheffield Hallam University for funding and
for the provision of a bursary for Y.J.N.
References
[1] P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science
318 (2007) 430.
[2] C.N.R. Rao, S.R.C. Vivekchand, K. Biswas, A. Govindaraj, Dalton Trans. (2007)
3728.
[3] M.-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.
[4] K.G. Thomas, P.V. Kamat, Acc. Chem. Res. 36 (2003) 888.
[5] C.-C. You, A. Chompoosor, V.M. Rotello, Nanotoday 2 (2007) 34.
[6] A. Verma, V.M. Rotello, Chem. Commun. (2005) 303.
[7] Y. Ju-Nam, N. Bricklebank, D.W. Allen, P.H.E. Gardiner, M.E. Light, M.B.
Hursthouse, Org. Biomol. Chem. 4 (2006) 4345.
[8] Y. Ju-Nam, D.W. Allen, P.H.E. Gardiner, M.E. Light, M.B. Hursthouse, N.
Bricklebank, J. Organomet. Chem. 692 (2007) 5065.
[9] D.C. Rideout, T. Calogeropoulou, J.S. Jaworski, R. Dagnino Jr., M.R. McCarthy,
Anti-Cancer Drug Design 4 (1989) 265.
[10] A.T. Hoye, J.E. Davoren, P. Wipf, M.P. Fink, V.E. Kagan, Acc. Chem. Res. 41 (2008)
87.
[11] M.P. Murphy, R.J.A. Smith, Annu. Rev. Pharmacol. Toxicol. 47 (2007) 629.
[12] M.F. Ross, T. Da Ros, F.H. Blaikie, T.A. Prime, C.M. Porteous, I.I. Severina, V.P.
Skulachev, H.G. Kjaergaard, R.A.J. Smith, M.P. Murphy, Biochem. J. 400 (2006)
199.
4.2.4. (3-Thioacetylpropyl)diphenylphosphine oxide (10)
[13] M.F. Ross, G.F. Kelso, F.H. Blaikie, A.M. James, H.M. Cocheme, A. Filipovska, T.
Da Ros, T.R. Hurd, R.A.J. Smith, M.P. Murphy, Biochemistry (Moscow) 70 (2005)
222.
[14] G.GM. D’Souza, S.V. Boddapati, V. Weissig, Pharm. Res. 2 (2007) 228.
[15] V. Weissig, S.V. Boddapati, L. Jabr, G.G. D’Souza, Nanomedicine 2 (2007) 275.
[16] J.A. Ioppolo, J.K. Clegg, L.M. Rendina, Dalton Trans. (2007) 1982.
[17] Y.-S. Kim, C.-T. Yang, J. Wang, L. Wang, Z.-B. Li, X. Chen, S. Liu, J. Med. Chem. 51
(2008) 2971.
[18] C.-T. Yang, Y. Li, S. Liu, Inorg. Chem. 46 (2007) 8988.
[19] I. Madar, H. Ravert, B. Nelkin, M. Abro, M. Pomper, R. Dannals, J.J. Frost, Eur. J.
Nucl. Med. Mol. Imaging 34 (2007) 2057.
[20] Z. Cheng, R.C. Winant, S.S. Gambhir, J. Nucl. Med. 46 (2005) 878.
[21] W.H. Binder, R. Sachsenhofer, C.J. Straif, R. Zirbs, J. Mater. Chem. 17 (2007)
2125.
[22] M. Green, P. O’Brien, Chem. Commun. (2000) 183.
[23] S. Pyrpassopoulos, D. Niarchos, G. Nounesis, N. Boukos, I. Zafiropoulou, V.
Tzitizioe, Nanotechnology 18 (2007) 485604.
[24] D.G. Duff, A. Baiker, P.P. Edwards, Langmuir 9 (1993) 2301.
[25] O. Harnack, W.E. Ford, A. Yasuda, J.M. Wessels, Nano Lett. 2 (2002) 919.
[26] M. Green, P. Rahman, D. Smyth-Boyle, Chem. Commun. (2007) 574.
[27] For a review, see e.g., T. Schrader, J. Inclusion Phenom. Macrocyclic Chem. 34
(1999) 117.
(3-Hydroxypropyl)diphenylphosphine oxide (8), prepared as
described by Okuma et al. [28] was then dissolved in HBr (48%)
and heated under reflux for 5 h to obtain the corresponding
bromopropylphosphine oxide (9). After isolation by solvent extrac-
tion into dichloromethane, this was then treated with potassium
thioacetate (1.5 mol) in a mixture of ethanol and water at room
temperature. The reaction mixture was left stirring overnight un-
der nitrogen. The progress of the reaction was monitored by TLC,
using 10% methanol: 90% dichloromethane as the mobile phase.
The (3-acetylthiopropyl)diphenylphosphine oxide (10) was ob-
tained by dichloromethane extractions of the reaction mixture,
and purified by trituration with dry diethyl ether to yield a yellow
oil. d31P NMR (CDCl3) = 31.42 ppm, d1H NMR (CDCl3) = 1.76–1.92
(2H,m), 2.22 (3H,s), 2.24–2.33 (2H,m), 2.90 (2H,t), 7.35–7.50
(5H,m) ppm, 7.63–7.71 (5H,m). ESMS: 244 [M-SCOCH3], 319
[M+H+], 341 [M+Na+]. MALDI-TOF accurate mass analysis. Found
319.1136 [M+H+]; cation (C17H19O2PS + H) requires 319.1143
[M+H+].
[28] S.-I. Yamamoto, K. Okuma, H. Ohta, Bull. Chem. Soc. Jpn. 61 (1988) 4476.
[29] G.J. Ashwell, G.A.N. Paxton, A.J. Whittam, W.D. Tyrrel, M. Berry, D. Zhou, J.
Mater. Chem. 12 (2002) 1631.
[30] G.J. Ashwell, A. Chwialkowska, L.R.H. High, J. Mater. Chem. 14 (2004) 2389.
[31] G.J. Ashwell, J. Ewington, K. Moczko, J. Mater. Chem. 15 (2005) 1154.
[32] A. Verma, H. Nakade, J.M. Simard, V.M. Rotello, J. Am. Chem. Soc. 126 (2004)
10806.
4.2.5. 3,3’-Bis(diphenylphosphinylpropyl)disulfide (12)
Treatment of (3-acetylthiopropyl)diphenylphosphine oxide (10)
with aqueous ammonia solution, followed by exposure to air over a
24 h period, led to the formation of the bis(phosphinylalkyldisul-
fide) (12) as a pale yellow solid, following extraction into dichloro-