Y.-Z. Wang et al. / Polymer 68 (2015) 270e278
277
[25] J. Malik, S.J. Clarson, A thermally reworkable UV curable acrylic adhesive
prototype, Int J Adhes Adhes 22 (4) (2002) 283e289.
[26] Y. Nishiyama, N. Uto, C. Sato, H. Sakurai, Dismantlement behavior and
strength of dismantlable adhesive including thermally expansive particles, Int
J Adhes Adhes 23 (5) (2003) 377e382.
for example further lower the Tg of the polymers. Nevertheless, this
is a simple approach to prepare UV dismantlable adhesives, and this
approach may also extend to thermal dismantlable adhesives.
[27] J.H. Aubert, Thermally removable epoxy adhesives incorporating thermally
reversible Diels-Alder adducts, J Adhes 79 (6) (2003) 609e616.
[28] H. Ishikawa, K. Seto, S. Shimotuma, N. Kishi, C. Sato, Bond strength and dis-
bonding behavior of elastomer and emulsion-type dismantlable adhesives
used for building materials, Int J Adhes Adhes 25 (3) (2005) 193e199.
[29] T. Xie, X. Xiao, Self-peeling reversible dry adhesive system, Chem Mater 20 (9)
(2008) 2866e2868.
Acknowledgments
This work is financially supported by National Natural Science
Foundation of China (No. 21090351 and 21225416) and National
Basic Research Program of China (No. 2011CB201402).
[30] R. Wang, T. Xie, Shape memory- and hydrogen bonding-based strong
reversible adhesive system, Langmuir 26 (5) (2010) 2999e3002.
[31] R. Wang, X. Xiao, T. Xie, Viscoelastic behavior and force nature of thermo-
reversibleepoxydryadhesives, MacromolRapidCommun31(3)(2010)295e299.
[32] X. Luo, K.E. Lauber, P.T. Mather, A thermally responsive, rigid, and reversible
adhesive, Polymer 51 (5) (2010) 1169e1175.
[33] E. Sato, H. Tamura, A. Matsumoto, Cohesive force change induced by poly-
peroxide degradation for application to dismantable adhesion, Acs Appl Mater
Interf 2 (9) (2010) 2594e2601.
Appendix A. Supplementary data
Supplementary data related to this article can be found at http://
References
[34] E. Sato, T. Hagihara, A. Matsumoto, Facile synthesis of main-chain degradable
block copolymers for performance enhanced dismantlable adhesion, Acs Appl
Mater Interf 4 (4) (2012) 2057e2064.
[35] K. Ebe, H. Seno, K.U.V. Horigome, curable pressure-sensitive adhesives for
fabricating semiconductors. I. Development of easily peelable dicing tapes,
J Appl Polym Sci 90 (2) (2003) 436e441.
[36] S.R. Trenor, T.E. Long, B.J. Love, Development of a light-deactivatable PSA via
photodimerization, J Adhes 81 (2) (2005) 213e229.
[37] T. Inui, E. Sato, A. Matsumoto, Pressure-sensitive adhesion system using
acrylate block copolymers in response to photoirradiation and postbaking as
the dual external stimuli for on-demand dismantling, Acs Appl Mater Interf 4
(4) (2012) 2124e2132.
[38] M. Kobayashi, M. Terada, A. Takahara, Reversible adhesive-free nanoscale
adhesion utilizing oppositely charged polyelectrolyte brushes, Soft Matter 7
(12) (2011) 5717e5722.
[39] B.J. Adzima, Y. Tao, C.J. Kloxin, C.A. DeForest, K.S. Anseth, C.N. Bowman, Spatial
and temporal control of the alkyne-azide cycloaddition by photoinitiated
Cu(II) reduction, Nat Chem 3 (3) (2011) 256e259.
[1] A. Baldan, Adhesively-bonded joints and repairs in metallic alloys, polymers
and composite materials: adhesives, adhesion theories and surface pretreat-
ment, J Mater Sci 39 (1) (2004) 1e49.
[2] B.P. Lee, P.B. Messersmith, J.N. Israelachvili, J.H. Waite, Mussel-inspired ad-
hesives and coatings, in: D.R. Clarke, P. Fratzl (Eds.), Annual review of mate-
rials research, vol. 41, 2011, pp. 99e132.
[3] Q. Ye, F. Zhou, W. Liu, Bioinspired catecholic chemistry for surface modifica-
tion, Chem Soc Rev 40 (7) (2011) 4244e4258.
[4] J. Sedo, J. Saiz-Poseu, F. Busque, D. Ruiz-Molina, Catechol-based biomimetic
functional materials, Adv Mater 25 (5) (2013) 653e701.
[5] E. Faure, C. Falentin-Daudre, C. Jerome, J. Lyskawa, D. Fournier, P. Woisel, et al.,
Catechols as versatile platforms in polymer chemistry, Prog Polym Sci 38 (1)
(2013) 236e270.
[6] M.E. Yu, T.J. Deming, Synthetic polypeptide mimics of marine adhesives,
Macromolecules 31 (15) (1998) 4739e4745.
[7] H. Lee, B.P. Lee, P.B. Messersmith, A reversible wet/dry adhesive inspired by
mussels and geckos, Nature 448 (7151) (2007) 338e341.
[40] C.A. DeForest, K.S. Anseth, Cytocompatible click-based hydrogels with
dynamically tunable properties through orthogonal photoconjugation and
photocleavage reactions, Nat Chem 3 (12) (2011) 925e931.
[41] A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Photodegradable hydrogels
for dynamic tuning of physical and chemical properties, Science 324 (5923)
(2009) 59e63.
[42] D.R. Griffin, A.M. Kasko, Photodegradable macromers and hydrogels for live
cell encapsulation and release, J Am Chem Soc 134 (31) (2012) 13103e13107.
[43] D.R. Griffin, A.M. Kasko, Photoselective delivery of model therapeutics from
hydrogels, Acs Macro Lett 1 (11) (2012) 1330e1334.
[8] C.E. Brubaker, P.B. Messersmith, Enzymatically degradable mussel-inspired
adhesive hydrogel, Biomacromolecules 12 (12) (2011) 4326e4334.
[9] G. Westwood, T.N. Horton, J.J. Wilker, Simplified polymer mimics of cross-
linking adhesive proteins, Macromolecules 40 (11) (2007) 3960e3964.
[10] C.R. Matos-Perez, J.D. White, J.J. Wilker, Polymer composition and substrate
influences on the adhesive bonding of a biomimetic, cross-linking polymer,
J Am Chem Soc 134 (22) (2012) 9498e9505.
[11] H. Chung, R.H. Grubbs, Rapidly cross-linkable DOPA containing terpolymer
adhesives and PEG-based cross-linkers for biomedical applications, Macro-
molecules 45 (24) (2012) 9666e9673.
[44] H. Zhao, E.S. Sterner, E.B. Coughlin, P. Theato, o-Nitrobenzyl alcohol de-
rivatives: opportunities in polymer and materials science, Macromolecules 45
(4) (2012) 1723e1736.
[45] J.-F. Gohy, Y. Zhao, Photo-responsive block copolymer micelles: design and
behavior, Chem Soc Rev 42 (17) (2013) 7117e7129.
[12] C.L. Jenkins, H.J. Meredith, J.J. Wilker, Molecular weight effects upon the ad-
hesive bonding of a mussel mimetic polymer, Acs Appl Mater Interf 5 (11)
(2013) 5091e5096.
[13] J.H. Cho, K. Shanmuganathan, C.J. Ellison, Bioinspired catecholic copolymers
for antifouling surface coatings, Acs Appl Mater Interf
5 (9) (2013)
[46] C.P. Holmes, D.G. Jones, Reagents for combinatorial organic-synthesis
e
3794e3802.
development of a new o-nitrobenzyl photolabile linker for solid-phase syn-
thesis, J Org Chem 60 (8) (1995) 2318e2319.
[14] J. Nishida, M. Kobayashi, A. Takahara, Light-triggered adhesion of water-
soluble polymers with a caged catechol group, Acs Macro Lett 2 (2) (2013)
112e115.
[15] E.M. White, J.E. Seppala, P.M. Rushworth, B.W. Ritchie, S. Sharma, J. Locklin,
Switching the adhesive state of catecholic hydrogels using phototitration,
Macromolecules 46 (22) (2013) 8882e8887.
[16] K. Numata, P.J. Baker, Synthesis of adhesive peptides similar to those found in
blue mussel (mytilus edulis) using papain and tyrosinase, Biomacromolecules
15 (8) (2014) 3206e3212.
[47] A.P. Pelliccioli, J. Wirz, Photoremovable protecting groups: reaction mecha-
nisms and applications, Photochem Photobiol Sci 1 (7) (2002) 441e458.
[48] Y.V. Il'ichev, M.A. Schworer, J. Wirz, Photochemical reaction mechanisms of 2-
nitrobenzyl compounds: methyl ethers and caged ATP, J Am Chem Soc 126
(14) (2004) 4581e4595.
[49] A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew Chem
Int Ed 39 (18) (2000) 3169e3210.
[50] A. Domling, Recent developments in isocyanide based multicomponent re-
actions in applied chemistry, Chem Rev 106 (1) (2006) 17e89.
[51] A. Domling, W. Wang, K. Wang, Chemistry and biology of multicomponent
reactions, Chem Rev 112 (6) (2012) 3083e3135.
[52] M. Passerini, I. Isonitriles, Compound of p-isonitrileazobenzene with acetone
and acetic acid, Gazz Chim Ital 51 (1921) 126e129.
[53] J.G. Rudick, Innovative macromolecular syntheses via isocyanide multicom-
ponent reactions, J Polym Sci Polym Chem 51 (19) (2013) 3985e3991.
[54] R. Kakuchi, Multicomponent reactions in polymer synthesis, Angew Chem Int
Ed 53 (1) (2014) 46e48.
[55] X.-X. Deng, L. Li, Z.-L. Li, A. Lv, F.-S. Du, Z.-C. Li, Sequence regulated poly(ester-
amide)s based on passerini reaction, Acs Macro Lett 1 (11) (2012) 1300e1303.
[56] Y.-Z. Wang, X.-X. Deng, L. Li, Z.-L. Li, F.-S. Du, Z.-C. Li, One-pot synthesis of
polyamides with various functional side groups via Passerini reaction, Polym
Chem 4 (3) (2013) 444e448.
[17] P. Wilke, N. Helfricht, A. Mark, G. Papastavrou, D. Faivre, H.G. Boerner, A direct
biocombinatorial strategy toward next generation, mussel-glue inspired
saltwater adhesives, J Am Chem Soc 136 (36) (2014) 12667e12674.
[18] S. Moulay, Dopa/catechol-tethered polymers: bioadhesives and biomimetic
adhesive materials, Polym Rev 54 (3) (2014) 436e513.
[19] Q. Lin, D. Gourdon, C. Sun, N. Holten-Andersen, T.H. Anderson, J.H. Waite, et
al., Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3, Proc
Natl Acad Sci 104 (10) (2007) 3782e3786.
[20] M.J. Harrington, A. Masic, N. Holten-Andersen, J.H. Waite, P. Fratzl, Iron-clad
fibers: a metal-based biological strategy for hard flexible coatings, Science 328
(5975) (2010) 216e220.
[21] M.E. Yu, J.Y. Hwang, T.J. Deming, Role of L-3,4-dihydroxyphenylalanine in
mussel adhesive proteins, J Am Chem Soc 121 (24) (1999) 5825e5826.
[22] H. Lee, N.F. Scherer, P.B. Messersmith, Single-molecule mechanics of mussel
adhesion, Proc Natl Acad Sci 103 (35) (2006) 12999e13003.
[57] A. Lv, X.-X. Deng, L. Li, Z.-L. Li, Y.-Z. Wang, F.-S. Du, et al., Facile synthesis of
multi-block copolymers containing poly(ester-amide) segments with an or-
dered side group sequence, Polym Chem 4 (13) (2013) 3659e3662.
[58] L.-J. Zhang, X.-X. Deng, F.-S. Du, Z.-C. Li, Chemical synthesis of functional
poly(4-hydroxybutyrate) with controlled degradation via intramolecular
cyclization, Macromolecules 46 (24) (2013) 9554e9562.
[23] T.H. Anderson, J. Yu, A. Estrada, M.U. Hammer, J.H. Waite, J.N. Israelachvili, The
contribution of DOPA to substrate-peptide adhesion and internal cohesion of
mussel-inspired synthetic peptide films, Adv Funct Mater 20 (23) (2010)
4196e4205.
[24] L.J. Wang, H.Y. Li, C.P. Wong, Syntheses and characterizations of thermally
reworkable epoxy resins II, J Polym Sci Polym Chem 38 (20) (2000) 3771e3782.