312
R. Ranjbar-Karimi et al. / Journal of Fluorine Chemistry 129 (2008) 307–313
6.2. Macrocycle 12a
Crystal data for 9b: 2(C23H12F8N4)ꢀCH2Cl2, M = 1077.66,
monoclinic, space group P21/c, a = 25.9093(7), b = 7.4516(2),
3
˚
˚
Sodium hydrogen carbonate (0.35 g, 5 mmol), 11a (1.31 g,
2.5 mmol) and N,N0-dimethylethylene diamine 10 (0.22 g,
2.5 mmol) gave macrocycle 12a (0.43 g, 30%) as a white solid;
mp 161–163 8C (found: C, 58.4; H, 4.2; N, 14.5%.
C28H24F6N6O requires C, 58.5; H, 4.2; N 14.6%); dH 3.29
(6H, s, CH3), 3.40 (4H, s, CH2), 3.45 (6H, s, CH3), 6.82–6.92
(8H, m, aryl-H); dF ꢂ93.0 (1F, m, F-2), ꢂ141.0 (1F, m, F-5),
ꢂ158.6 (1F, m, F-3); m/z (EI+) 574 ([M]+, 10%), 489 (37), 349
(100), 226 (21).
c = 26.3977(7) A, ( = 116.29(1)8, U = 4569.3(2) A , F(0 0 0)
= 2168, Z = 4, Dc = 1.567 mg mꢂ3, ( = 0.253 mmꢂ1. 50402
reflections collected; 12727 unique data (Rmerg = 0.046). Final
wR2(F2) = 0.1395 for all data (758 refined parameters),
conventional R(F) = 0.0469 for 10,075 reflections with
I ꢃ 2(, GOF = 1.032.
Crystal data for 11a: C24H14F8N4O, M = 526.39, mono-
clinic, space group P21/c, a = 14.5346(4), b = 7.8419(2),
3
˚
˚
c = 19.3663(6) A, ( = 102.15(1)8, U = 2157.9(1) A , F(0 0 0)
= 1064, Z = 4, Dc = 1.620 mg mꢂ3, ( = 0.150 mmꢂ1, 27,215
reflections collected; 5998 unique data (Rmerg = 0.095). Final
wR2(F2) = 0.1355 for all data (390 refined parameters),
conventional R(F) = 0.0394 for 5007 reflections with I ꢃ 2(,
GOF = 1.076.
6.3. Macrocycle 12b
Sodium hydrogen carbonate (0.35 g, 5 mmol), 11b (1.31 g,
2.5 mmol) and N,N0-dimethylethylene diamine 10 (0.22 g,
2.5 mmol) gave macrocycle 12b (0.48 g, 34%) as a white solid;
mp 152–154 8C (found: C, 60.7; H, 4.5; N, 14.6. C29H26F6N6
requires C, 60.9; H, 4.6; N 14.7%); dH 3.06 (6H, s, CH3), 3.31
(6H, s, CH3), 3.51 (4H, s, CH2), 3.87 (2H, s, CH2), 6.77 (4H, m,
aryl-H), 7.02 (4H, m, aryl-H); dF ꢂ94.1 (1F, m, F-2), ꢂ141.5
(1F, m, F-5), ꢂ161.4 (1F, m, F-3); m/z (EI+) 572 ([M]+, 5%),
331 (17), 330 (100).
Crystal data for 13: C12H10F6N6, M = 352.26, monoclinic,
group
space
C2/c,
a = 11.4620(3),
b = 12.2442(4),
3
˚
˚
c = 9.9728(3) A, ( = 90.45(1)8, U = 1399.69(7) A , F(0 0 0)
= 712, Z = 4, Dc = 1.672 mg mꢂ3, ( = 0.163 mmꢂ1, 8624
reflections collected; 1871 unique data (Rmerg = 0.067). Final
wR2(F2) = 0.1350 for all data (133 refined parameters),
conventional R(F) = 0.0429 for 1514 reflections with I ꢃ 2(,
GOF = 1.079. Molecule is located on the twofold axis.
Crystal data for 14: C16H20F4N8, M = 400.40, monoclinic,
space
group
P21/c,
a = 8.7586(2),
b = 11.4815(3),
3
6.4. Macrocycle 14
˚
˚
c = 8.4589(2) A, ( = 93.07(1)8, U = 849.42(4) A , F(0 0 0) =
416, Z = 2, Dc = 1.565 mg mꢂ3
, , 10,668
( = 0.132 mmꢂ1
Sodium hydrogen carbonate (0.35 g, 5 mmol), 13 (0.6 g,
1.7 mmol) and N,N0-dimethylethylene diamine 10 (0.14 g,
1.7 mmol) gave macrocycle 14 (0.35 g, 54%); mp 134–136 8C
(found: C, 47.9; H, 5.0; N, 27. 9%. C16H20F4N8 requires C,
48.0; H, 5.0; N 28.0%); dH 3.09 (6H, s, CH3), 3.12 (4H, m,
reflections collected; 2360 unique data (Rmerg = 0.044). Final
wR2(F2) = 0.1366 for all data (167 refined parameters),
conventional R(F) = 0.0381 for 2133 reflections with I ꢃ 2(,
GOF = 1.185.
1
CH2); dC 38.6 (s, CH3), 49.7 (s, CH2), 130.8 (dd, JCF 236.6,
4JCF 4.5, C-5), 153.84 (m, C-4), 155.2 (dd, 1JCF 204.3, 4JCF 4.1,
C-2); dF ꢂ51.3 (2F, d, 5JFF 11.8, F-2), ꢂ89.65 (2F, d, 5JFF 11.8,
F-5); m/z (EI+) 400 ([M]+, 20%), 226 (30), 200 (75), 186 (100).
Acknowledgement
We thank the Iranian Government for a travel grant (to RK).
References
6.5. X-ray crystal structure determination of 9b, 11a, 13
and 141
[1] B. Dietrich, P. Viout, J.M. Lehn, Macrocyclic Chemistry, VCH, Wein-
heim, 1993.
The X-ray single crystal data for the compounds were
collected at 120K on Bruker SMART CCD 6000 (11a, 13, 14)
and APEX Proteum-M (9b) diffractometers (Mo K(,
[2] D. Parker, Macrocycle Synthesis: A Practical Approach, OUP, Oxford,
1996.
˚
[3] H.J. Schneider, A.K. Yatsimirsky, Principles and Methods in Supramo-
lecular Chemistry, John Wiley and Sons, New York, 2000.
[4] J.M. Lehn, J.L. Atwood, J.E.D. Davies, D.D. MacNicol, F. Votgle,
Supramolecular Chemistry, vols. 1–11, OUP, Oxford, 1996.
[5] G. Gokel, Crown Ethers and Cryptands, RSC, Cambridge, 1991.
[6] C.D. Gutsche, Calixarenes, RSC, Cambridge, 1989.
[7] G. Sandford, Chem. Eur. J. 9 (2003) 1464–1469.
[8] Q.Q. Wang, D.X. Wang, Q.Y. Zheng, M.X. Wang, Org. Lett. 9 (2007)
2847–2850.
( = 0.71073 A, (-scan, 0.38/frame) equipped with Oxford
Cryostream cooling devices. All structures were solved by
direct methods and refined by full-matrix least squares on F2
for all data using SHELXTL software. All non-hydrogen atoms
were refined with anisotropic displacement parameters, all H-
atoms (except those of the disordered solvent in the structure of
9b, which were placed in calculated positions and refined in the
riding mode) were located on the difference map and refined
isotropically.
[9] B.Y. Hou, D.X. Wang, H.B. Yang, Q.Y. Zheng, M.X. Wang, J. Org. Chem.
72 (2007) 5218–5226.
[10] C. Zhang, C.F. Chen, J. Org. Chem. 72 (2007) 3880–3888.
[11] W. Maes, W.V. Rossom, K.V. Hecke, L.V. Meervelt, W. Dehaen, Org. Lett.
8 (2006) 4161–4164.
1
CCDC 667916–667919 contain the supplementary crystallographic data for
[12] L. Jiao, E. Hao, F.R. Fronczek, K.M. Smith, M. Vicente, H. Graca,
Tetrahedron 63 (2007) 4011–4017.
[13] J.L. Katz, M.B. Feldman, R.R. Conry, Org. Lett. 7 (2005) 91–94.