Organic Letters
Letter
Org. Lett. 2013, 15, 2869−2871. (c) Mase, N.; Hayashi, Y.;
In the presence of neighboring heteroatom X, the
equilibrium may shift from D to E driven by the formation
of the intramolecular O−H···X hydrogen bond.23 For example,
3f was reported to exist mainly in enol form E due to the
strong intramolecular O−H···F hydrogen bonding.24 We
believe that the enol E exposes its electron pairs on the two
oxygens adequately toward the ruthenium catalyst to form
efficacious coordination (F and F′ in Scheme 5b) for the
selective hydrogentaion to take place. As evidence, ethyl 4-
chloroacetoacetate (X = Cl; R1 = OEt) can be hydrogenated in
cyclohexane or THF, while ethyl acetoacetate (X = H; R1 =
OEt) cannot.21b To obtain some structural information for the
enol forms that may contribute to the unprecedented
Heathcock, C.; Kobayashi, S.; Yamashita, Y.; Yoo, W.-J.;
́
Kitanosono, T.; Soule, J.-F.; Harada, T.; Abiko, A. In Comprehensive
Organic Synthesis, 2nd ed.; Knochel, P., Molander, G. A., Eds.;
Elsevier, 2014; Vol. 2, pp 273−511.
(2) (a) Wadamoto, M.; Ozasa, N.; Yanagisawa, A.; Yamamoto, H. J.
Org. Chem. 2003, 68, 5593−5601. (b) Lou, S.; Westbrook, J. A.;
Schaus, S. E. J. Am. Chem. Soc. 2004, 126, 11440−11441.
(c) Kobayashi, S.; Ogino, T.; Shimizu, H.; Ishikawa, S.; Hamada,
T.; Manabe, K. Org. Lett. 2005, 7, 4729−4731. (d) Paradowska, J.;
Pasternak, M.; Gut, B.; Gryzło, B.; Mlynarski, J. J. Org. Chem. 2012,
77, 173−187. (e) Shu, K.; Kodadek, T. ACS Comb. Sci. 2018, 20,
277−281.
̂
(3) (a) Labeeuw, O.; Bourg, J. B.; Phansavath, P.; Genet, J. P.
ckner, R. Eur. J. Org.
1
reactivity, we performed a H−13C HMBC experiment with
Arkivoc 2007, 2007, 94−106. (b) Diehl, J.; Bru
̈
Chem. 2017, 2017, 278−286. (c) Che, W.; Li, Y.-Z.; Liu, J.-C.; Zhu,
S.-F.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2019, 21, 2369−2373.
(4) (a) Boersma, A. J.; Coquiere, D.; Geerdink, D.; Rosati, F.;
1a in d8-THF and the enol form on the heteroatom’s side (D
or E) was indeed the predominant form (see the Supporting
Information). However, the detailed hydrogenation mecha-
nism is still unclear.25
̀
Feringa, B. L.; Roelfes, G. Nat. Chem. 2010, 2, 991. (b) Yum, J. H.;
Park, S.; Hiraga, R.; Okamura, I.; Notsu, S.; Sugiyama, H. Org. Biomol.
Chem. 2019, 17, 2548−2553.
In summary, we have developed a practical and general
procedure for the chemo- and enantioselective hydrogenation
of various heteroatom-substituted β-diketones. Our method
enriches the toolbox for the synthesis of various valuable chial
β-hydroxy ketones, which have been prepared only via some
waste- and step-intensive transformations. The role of
activation of the heteroatoms was also proposed on the basis
of the analysis of the hydrogen bond orientation in the relevant
substrates. Further investigations of the assistance of the
heteroatoms and applications of this method in the synthesis of
more functionally versatile alcohols are underway in our group.
(5) (a) Kobayashi, S.; Xu, P.; Endo, T.; Ueno, M.; Kitanosono, T.
Angew. Chem., Int. Ed. 2012, 51, 12763−12766. (b) Thorpe, S. B.;
Calderone, J. A.; Santos, W. L. Org. Lett. 2012, 14, 1918−1921.
(c) Zhu, L.; Kitanosono, T.; Xu, P.; Kobayashi, S. Chem. Commun.
2015, 51, 11685−11688.
(6) (a) Kel’in, A. V. Curr. Org. Chem. 2003, 7, 1691−1711.
(b) Shokova, E. A.; Kim, J. K.; Kovalev, V. V. Russ. J. Org. Chem. 2015,
51, 755−830.
(7) (a) Kalaitzakis, D.; Rozzell, J. D.; Smonou, I.; Kambourakis, S.
Adv. Synth. Catal. 2006, 348, 1958−1969. (b) Ema, T.; Kadoya, T.;
Akihara, K.; Sakai, T. J. Mol. Catal. B: Enzym. 2010, 66, 198−202.
(c) Vitale, P.; Perna, F. M.; Agrimi, G.; Scilimati, A.; Salomone, A.;
Cardellicchio, C.; Capriati, V. Org. Biomol. Chem. 2016, 14, 11438−
11445. (d) Xu, F.; Xu, J.; Hu, Y.; Lin, X.; Wu, Q. RSC Adv. 2016, 6,
76829−76837. (e) Dall’Oglio, F.; Contente, M. L.; Conti, P.;
Molinari, F.; Monfredi, D.; Pinto, A.; Romano, D.; Ubiali, D.;
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
̇
Tamborini, L.; Serra, I. Catal. Commun. 2017, 93, 29−32. (f) Ządło-
Dobrowolska, A.; Schrittwieser, J. H.; Grischek, B.; Koszelewski, D.;
Kroutil, W.; Ostaszewski, R. Tetrahedron: Asymmetry 2017, 28, 797−
802.
Details of experimental procedures, characterization data
for 1−4, NMR spectra for compounds 1−4, and HPLC
charts for racemic and chiral compounds 2 and 4 (PDF)
(8) (a) Ohtsuka, Y.; Koyasu, K.; Ikeno, T.; Yamada, T. Org. Lett.
2001, 3, 2543−2546. (b) Yamada, T.; Nagata, T.; Sugi, K. D.; Yorozu,
K.; Ikeno, T.; Ohtsuka, Y.; Miyazaki, D.; Mukaiyama, T. Chem. - Eur.
J. 2003, 9, 4485−4509.
(9) (a) Wu, Y.; Geng, Z.; Bai, J.; Zhang, Y. Chin. J. Chem. 2011, 29,
1467−1472. (b) Cotman, A. E.; Cahard, D.; Mohar, B. Angew. Chem.,
Int. Ed. 2016, 55, 5294−5298.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40,
40−73. (b) Shang, G.; Li, W.; Zhang, X. In Catalytic Asymmetric
Synthesis, 3rd ed.; Ojima, I., Ed.; John Wiley & Sons, Inc.: Hoboken,
NJ, 2010. (c) Ager, D. J.; De Vries, A. H. M.; De Vries, J. G. Chem.
Soc. Rev. 2012, 41, 3340−3380. (d) Xie, J.; Zhou, Q. Huaxue Xuebao
2012, 70, 1427−1438. (e) Seo, C. S. G.; Morris, R. H. Organometallics
2019, 38, 47−65.
Notes
The authors declare no competing financial interest.
(11) Xie, X.; Lu, B.; Li, W.; Zhang, Z. Coord. Chem. Rev. 2018, 355,
39−53.
ACKNOWLEDGMENTS
■
(12) (a) Kawano, H.; Ishii, Y.; Saburi, M.; Uchida, Y. J. Chem. Soc.,
Chem. Commun. 1988, 87−88. (b) Kitamura, M.; Ohkuma, T.; Inoue,
S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.;
Noyori, R. J. Am. Chem. Soc. 1988, 110, 629−631. (c) Shao, L.;
Kawano, H.; Saburi, M.; Uchida, Y. Tetrahedron 1993, 49, 1997−
The authors thank the National Natural Science Foundation of
China, the Science and Technology Commission of Shanghai
Municipality, and the Education Commission of Shanghai
Municipality for financial support. The authors are also very
grateful for Mr. Chengyang Li’s generous help in partial NMR
and HPLC experiments.
̂
2010. (d) Blanc, D.; Ratovelomanana-Vidal, V.; Marinetti, A.; Genet,
J. P. Synlett 1999, 1999, 480−482. (e) Blandin, V.; Carpentier, J.-F.;
Mortreux, A. Eur. J. Org. Chem. 1999, 1999, 3421−3427. (f) Blandin,
V.; Carpentier, J.-F.; Mortreux, A. New J. Chem. 2000, 24, 309−312.
(13) (a) Li, W.; Fan, W.; Ma, X.; Tao, X.; Li, X.; Xie, X.; Zhang, Z.
Chem. Commun. 2012, 48, 8976−8978. (b) Li, W.; Xie, X.; Tao, X.;
REFERENCES
■
(1) (a) Evans, D. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1990, 112,
6447−6449. (b) Ueno, M.; Huang, Y.-Y.; Yamano, A.; Kobayashi, S.
D
Org. Lett. XXXX, XXX, XXX−XXX