2046
C. Wang et al. / Tetrahedron Letters 51 (2010) 2044–2047
Table 2
tivities when utilized in the Pd-catalyzed asymmetric hydrogena-
tion of -phthalimide ketones.
Optimization of reaction conditions for Pd-catalyzed hydrogenation of N-phenacyl-
a
phthalimidea
Acknowledgments
O
O
HO
O
Catalyst
solv.
Ph
Ph
N
N
This work was supported by the National Natural Science Foun-
dation of China (No. 20772081), Science and Technology Commis-
sion of Shanghai Municipality (Nos. 08431901700, 09JC1407800),
and Nippon Chemical Industrial Co., Ltd. We thank Prof. Tsuneo
Imamoto for helpful discussion.
Temp.
H2,24h
O
O
9a
10a
Entry
Ligand
Temp. (°C)
H2 (atm)
Conv.b (%)
eec (%)
1
2
3
4
5
6
7
8
9
(R)-1d
(R)-1d
(R)-1d
(R)-1d
(R)-1d
(R)-1a
(R)-1b
(R)-1c
(R)-1e
rt
rt
35
70
70
100
100
100
100
100
100
34
51
83
>99
>99
>99
>99
>99
>99
53
67
81
98
96
93
96
97
90
References and notes
50
80
90
80
80
80
80
1. (a) For representative reviews, see: Asymmetric Catalysis in Organic Synthesis;
Noyori, R., Ed.; Wiley: New York, 1994; (b) Comprehensive Asymmetric Catalysis
I–III; Jacobson, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999;
(c) Principles and Applications of Asymmetric Synthesis; Lin, G.-Q., Li, Y.-M., Chan,
A. S. C., Eds.; Wiley: New York, 2001; (d) Shimizu, H.; Nagasaki, I.; Saito, T.. In
Phosphorus Ligands in Asymmetric Catalysis; Börner, A., Ed.; Wiley-VCH:
Weinhem, 2008; Vol. 1, pp 207–260; (e) Li, Y.-M.; Yu, W.-Y.; Chan, A. S. C.. In
Phosphorus Ligands in Asymmetric Catalysis; Börner, A., Ed.; Wiley-VCH:
Weinhem, 2008; Vol. 1, pp 260–283; (f) Otero, I.; Börner, A.. In Phosphorus
Ligands in Asymmetric Catalysis; Börner, A., Ed.; Wiley-VCH: Weinhem, 2008;
Vol. 1, pp 307–329; (g) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40,
40; (h) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; (i) Shimizu, H.;
Nagasaki, I.; Saito, T. Tetrahedron 2005, 61, 5405.
a
b
C
Reaction conditions: Pd(CF3CO2)2 2.0 mol %, (R)-1 2.4 mol %.
Determined by 1H NMR analysis of the crude products.
The enantiomeric excesses were determined by chiral HPLC using a Daicel
Chiralcel OJ-H column. The R absolute configurations were assigned by comparison
of optical rotations with the literature data.13
2. (a) Miyashita, A.; Yasuda, H.; Takaya, H.; Toriumi, K.; Ito, T.; Noyori, R. J. Am.
Chem. Soc. 1980, 102, 7932; (b) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23,
345.
3. (a) Schmid, R.; Cereghetti, M.; Heiser, B.; Schonholzer, P.; Hansen, H.-J. Helv.
Chim. Acta 1988, 71, 897; (b) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri,
Y.; Foricehr, J.; Lalonde, M.; Muller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U.
Pure Appl. Chem. 1996, 68, 131.
for possible use in the hydrogenation with Pd-(R)-1d catalyst. Both
electron-deficient and electron-rich aryl ketones could be hydroge-
nated with high conversions and enantioselectivities (Table 3, en-
tries 1–9). For example, hydrogenated products with 98% ee were
obtainedforpara-substituted9b (entry2) and9d(entry4). Thehigh-
est enantioselectivity (99%) was also achieved upon hydrogenation
of m-methoxy-substituted phenyl ketone 9e (entry 5), which was
comparable to the best result obtained with Ru–phosphine com-
plexes.13 Alkyl ketone 9j also worked well, giving high enantioselec-
tivity (entry10). To our knowledge, these enantioselectivities arethe
highest achieved so far for the homogeneous Pd-catalyzed asym-
4. Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi,
H. Adv. Synth. Catal. 2001, 343, 264.
5. (a) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223; (b)
Wu, S.; Wang, W.; Tang, W.; Lin, M.; Zhang, X. Org. Lett. 2002, 4, 4495; (c) Lei,
A.; Wu, S.; He, M.; Zhang, X. J. Am. Chem. Soc. 2004, 126, 1626; (d) Wang, C.-J.;
Sun, X.; Zhang, X. Angew. Chem. 2005, 117, 5013. Angew. Chem., Int. Ed. 2005, 44,
4933; (e) Raghunath, M.; Zhang, X. Tetrahedron Lett. 2005, 46, 7017; (f) Wang,
C.-J.; Sun, X.; Zhang, X. Synlett 2006, 1169.
6. Pai, C.-C.; Lin, C.-W.; Lin, C.-C.; Chen, C.-C.; Chan, A. S. C. J. Am. Chem. Soc. 2000,
122, 11513.
metric hydrogenation of a
-phthalimide ketones.14
7. (a) Duprat de Paule, S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.;
Champion, N.; Dellis, P. Tetrahedron Lett. 2003, 44, 823; (b) Duprat de Paule, S.;
Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Org.
Proc. Res. Dev. 2003, 7, 399; (c) Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-
Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Angew. Chem., Int. Ed. 2004, 43,
320; (d) Wu, J.; Ji, J.-X.; Chan, A. S. C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3570;
(e) Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo,
R.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2006, 128, 5955; (f) Shintani, R.;
Yashio, K.; Nakamura, T.; Okamoto, K.; Shimada, T.; Hayashi, T. J. Am. Chem. Soc.
2006, 128, 2772.
In conclusion, we have developed a new class of atropisomeric
diphosphine ligands with a wide range of dihedral angles. X-ray
study of the Pd(II) complexes of these ligands showed that as the
bridge length increased, the dihedral angles and the ligand bite an-
gles increased as well, while an excessive increase in bridge length
had a reverse effect. These ligands afforded excellent enantioselec-
8. (a) Wang, F.; Zhang, Y. J.; Wei, H.; Zhang, J.; Zhang, W. Tetrahedron Lett. 2007,
48, 4083; (b) Wei, H.; Zhang, Y. J.; Wang, F.; Zhang, W. Tetrahedron: Asymmetry
2008, 19, 482; (c) Zhang, Y. J.; Wei, H.; Zhang, J. M.; Zhang, W. Tetrahedron
2009, 65, 1281.
Table 3
Asymmetric hydrogenation of
a
-phthalimide ketonesa
9. 5,50-Heptamethylenedioxy-2,20-bis(diphenylphosphino) biphenyl (1a). 1H NMR
(400 MHz, CDCl3): d = 7.51–7.09 (m, 22H, ArH), 6.82 (dd, J = 3.0, 8.2 Hz, 2H,
ArH), 6.36 (d, J = 8.2 Hz, 2H, ArH), 4.19 (m, 2H, OCH), 3.86 (m, 2H, OCH), 1.93–
1.29 (m, 10H, CH); 13C NMR (100 MHz, CDCl3): d = 157.73, 149.81, 138.99,
138.94, 138.87, 135.92, 134.01, 133.90, 133.79, 133.62, 133.52, 133.42, 128.32,
128.30, 128.27, 128.24, 128.04, 127.03, 117.81, 116.44, 67.45, 26.78, 24.69,
22.13; 31P NMR (162 MHz, CDCl3, 85% H3PO4): d = ꢀ15.3; HRMS (ESI): Calcd for
O
HO
O
O
R
Pd(CF3CO2)2
ligand*
R
N
N
H
2 (100atm)
+
CF3CH2OH
80 oC,24h
O
O
10a- j
9a- j
C43H40O2P2 [M]+ 650.2504, found: 650.2506. For (R)-1a: ½a 2D7
ꢀ131 (c 0.50,
ꢁ
Entry
Substrate
9a (R = Ph)
Conv.b (%)
eec (%)
CHCl3). For (S)-1a: ½ ꢁ
a 2D7 130 (c 0.50, CHCl3). 5,50-Octamethylenedioxy-2,20-
1
2
3
4
5
6
7
8
9
>99
>99
>99
>99
>99
87
>99
>99
93
98
98
93
98
99
88
92
78
94
91
bis(diphenylphosphino)biphenyl (1b). 1H NMR (400 MHz, CDCl3): d = 7.40–7.10
(m, 20H, ArH), 6.96 (dt, J = 2.4, 8.8 Hz, 2H, ArH), 6.76 (dd, J = 3.8, 5.2 Hz, 2H,
ArH), 6.39 (d, J = 3.8 Hz, 2H), 3.89 (dd, J = 1, 2 Hz, 4H, OCH), 1.86–1.15 (m, 12H,
CH); 13C NMR (100 MHz, CDCl3): d = 159.28, 149.28, 149.08, 148.89, 138.73,
138.66, 138.59, 138.54, 138.48, 135.28, 134.22, 134.12, 134.01, 133.72, 133.62,
133.58, 133.51, 128.42, 128.40, 128.37, 128.31, 128.28, 128.24, 128.21, 128.13,
127.44, 127.41, 117.82, 115.23, 115.19, 115.15, 65.98, 28.99, 28.89, 25.25; 31P
NMR (162 MHz, CDCl3, 85% H3PO4): d = ꢀ14.4; HRMS (ESI) Calcd for C44H42O2P2
9b (R = p-CH3C6H4)
9c (R = p-PhC6H4)
9d (R = p-FC6H4)
9e (R = m-CH3OC6H4)
9f (R = p-ClC6H4)
9g (R = m-ClC6H4)
9h (R = o-ClC6H4)
9i (R = 2-naphthyl)
9j (R = Me)
[M]+ 664.2660, found: 664.2664. For (R)-1b: ½a 2D7
ꢀ123 (c 0.50, CHCl3). For (S)-
ꢁ
1b: ½a 2D7
ꢁ
+123 (c 0.50, CHCl3). 5,50-Nonamethylenedioxy-2,20-bis(diphenylphos-
10
>99
phino)biphenyl (1c). 1H NMR (400 MHz, CDCl3): d = 7.74–7.10 (m, 20H, ArH),
6.98 (d, J = 8.4 Hz, 2H, ArH), 6.79 (d, J = 8.4 Hz, 2H, ArH), 6.33 (s, 2H, ArH), 4.00
(m, 2H, OCH), 3.65 (m, 2H, OCH), 1.78–0.83 (m, 14H, CH); 13C NMR (100 MHz,
CDCl3): d = 158.15, 135.31, 134.19, 134.10, 133.67, 133.58, 133.47, 128.60,
128.56, 128.51, 128.37, 128.31, 128.10, 117.54, 117.42, 68.02, 28.34, 28.22,
27.01, 24.51; 31P NMR (162 MHz, CDCl3, 85% H3PO4): d = ꢀ14.8; HRMS (ESI)
a
b
c
Reaction conditions: Pd(CF3CO2)2 2.0 mol %, (R)-1d 2.4 mol %.
Determined by 1H NMR analysis of the crude products.
The enantiomeric excesses were determined by chiral HPLC using a Daicel
Chiralcel OJ-H column. The R absolute configurations were assigned by comparison
of optical rotations with the literature data.13,14