T. Esumi et al. / Tetrahedron Letters 49 (2008) 6846–6849
6849
room temperature and the mixture was stirred for 30 min. The reaction
mixture was diluted with ether (10 mL) and the formed white precipitate was
removed by filtration through the glass filter (3 G) under argon atmosphere,
the residue was washed with ether (5 mL). The dark red filtrate was added to
the suspension of CuCN (1.36 g, 15.1 mmol) in ether (8 mL) via cannula at
ꢀ78ꢀC, and then the reaction mixture was allowed to warm to 0ꢀC and stirred
until the solution turned to dark green suspension (ca. 2 min). The supernatant
was added to the solution of 3 (2.02 g, 3.80 mmol) in ether (8 mL) via cannula
at ꢀ78 °C, and then the reaction mixture was stirred for 16 h at ꢀ50 °C. The
reaction mixture was diluted with 10% NH4OH (80 mL) and stirred for 30 min,
and then filtered through the Celite, extracted with ether (3 ꢃ 80 mL). The
combined ether layers were dried with MgSO4, filtered, and concentrated to
give the residue, which was purified by column chromatography (SiO2,
Research Center Fund from the Promotion and Mutual Aid Corpo-
ration from Private Schools of Japan.
References and notes
1. Fukuyama, Y.; Esumi, T. J. Synth. Org. Chem. Jpn. 2007, 65, 585–597 and
references cited therein.
2. Yuasa, H.; Makado, G.; Fukuyama, Y. Tetrahedron Lett. 2003, 44, 6235–6239.
3. (a) Fuji, K. Chem. Rev. 1993, 93, 2037–2066; (b) Quaternary Stereocenters:
Challenges and Solutions for Organic Synthesis; Christffers, J., Baro, A., Eds.;
Wiley-VCH: Germany, 2005; (c) Trost, B. M.; Jiang, C. Synthesis 2006, 369–396;
(d) Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H.; Zhou, Q.-L. J. Am. Chem.
Soc. 2006, 128, 2780–2781; (e) Hashimoto, T.; Naganawa, Y.; Maruoka, K. J. Am.
Chem. Soc. 2008, 130, 2434–2435.
hexane–EtOAc = 10:1) to give
4 (1.69 g, 3.00 mmol, 79%, dr = 95: 5) as a
slightly yellow oil. Data for 4: ½a D18
ꢂ
ꢀ180.7 (c 0.26, CHCl3); IR 1710, 1780 cmꢀ1
;
1H NMR (CDCl3, 400 MHz) d 7.64 (d, J = 7.6 Hz, 4H), 7.26–7.44 (m, 11H), 5.82
(dd, J = 10.4, 17.6 Hz, 1H), 5.39 (dd, J = 4.0, 8.8 Hz, 1H), 4.94 (dd, J = 1.2, 10.4 Hz,
1H), 4.82 (dd, J = 1.2, 17.6 Hz, 1H), 4.61 (t, J = 8.8 Hz, 2H), 4.23 (dd, J = 3.6,
8.8 Hz, 1H), 3.57 (m, 2H), 3.17 (d, J = 14.8 Hz, 1H), 2.87 (d, J = 14.4 Hz, 1H), 1.44
(m, 2H), 1.03 (s, 12H); 13C NMR (100 MHz, CDCl3) d 153.8, 145.2, 139.2, 135.6,
134.1, 129,6, 129.1, 128.7, 127.7, 126.2, 112.5, 69.6, 64.4, 57.8, 44.1, 39.8, 36.8,
27.4, 26.9, 22.8, 19.3; HRMS m/z (EI) [MꢀH]+ calcd for C34H40NO4Si, 554.2727;
found, 554.2696.
4. Martin, D.; Kehrli, S.; d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am.
Chem. Soc. 2006, 128, 8416–8417.
5. For reviews on diastereoselective 1,4-aditions of
a,b-unsaturated carboxylic
acid derivatives, see: (a) Yamamoto, Y. Angew. Chem., Int. Ed. Engl. 1986, 25,
947–1038; (b) Krause, N.; Hoffmann-Roder, A. Synthesis 2001, 171–196; (c)
Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221–3236.
6. (a) Oppolzer, W.; Loher, H. J. Helv. Chim. Acta 1981, 64, 2808–2907; (b)
Oppolzer, W.; Moretti, R.; Godel, T.; Meunier, A.; Loher, H. Tetrahedron Lett.
1983, 24, 4971–4974; (c) Tomioka, K.; Suenaga, T.; Koga, K. Tetrahedron Lett.
1986, 27, 369–372; (d) Melnyk, O.; Stephan, E.; Pourcelot, G.; Cresson, P.
Tetrahedron 1992, 48, 841–850; (e) Li, G.; Russell, K. C.; Jarosinski, M. A.; Hruby,
V. J. Tetrahedron Lett. 1993, 34, 2565–2568; (f) Williams, D. R.; Li, J. Tetrahedron
Lett. 1994, 35, 5113–5116; (g) Qian, X.; Russell, K. C.; Boteju, L. W.; Hruby, V. J.
Tetrahedron 1995, 51, 1033–1054; (h) van Heerden, P. S.; Benzuidenhoudt, B. C.
B.; Ferreira, D. Tetrahedron Lett. 1997, 38, 1821–1824; (i) Williams, D. R.; Kissel,
W. S.; Li, J. J. Tetrahedron Lett. 1998, 8593–8596; (j) Soloshonok, V. A.; Cai, C.;
Hruby, V. J. Tetrahedron Lett. 2000, 41, 9645–9649; (k) Dambacher, J.; Bergdahl,
M. Org. Lett. 2003, 5, 3539–3541; (l) Pérez, L.; Bernes, S.; Quintero, L.; Parrodi, C.
A. Tetrahedron Lett. 2005, 46, 8649–8652.
11. For isolation and structure determination, see: (a) Mehta, G.; Nayak, U. R.;
Dev, S. Tetrahedron Lett. 1966, 4561–4567; (b) Crabduff, J.; Miller, J. A. J.
Chem. Soc. (C) 1968, 2671–2673; (c) Vig, O. P.; Vig, A. K.; Chugh, O. P.;
Gupta, K. C. J. Indian Chem. Soc. 1976, 53, 366–370; (d) Wu, C.-Z.; Cai, X. F.;
Dat, N. T.; Hong, S. S.; Han, A.-R.; Seo, E.-K.; Hwang, B. Y.; Nan, J.-X.; Lee, D.;
Lee, J. J. Tetrahedron Lett. 2007, 48, 8861–8864; For enantioselective total
synthesis, see: (e) Takano, S.; Shimazaki, Y.; Ogasawara, K. Tetrahedron Lett.
1990, 31, 3325–3326.
12. Data for methylbakuchiol (11): ½a D18
ꢂ
+28.4 (c 1.07, CHCl3); 1H NMR (CDCl3,
400 MHz) d 7.27 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.26 (d, J = 16.4 Hz,
1H), 6.06 (d, J = 16.4 Hz, 1H), 5.88 (dd, J = 10.8, 17.6 Hz, 1H), 5.11 (quint. t,
J = 1.6, 7.2 Hz, 1H), 5.03 (dd, J = 1.2, 10.8 Hz, 1H), 5.01 (dd, J = 1.2, 17.6 Hz), 3.80
(s, 3H), 1.95 (dt, J = 4.0, 7.6 Hz, 2H), 1.67 (d, J = 0.8 Hz, 3H), 1.58 (d, J = 0.8 Hz,
3H), 1,49 (m, 2H), 1.20 (s, 3H); 13C NMR (CDCl3, 100 MHz) d 158.8, 146.1, 135.9,
131.4, 130.8, 127.2, 126.6, 124.9, 114.0, 111.9, 55.4, 42.6, 41.4, 25.8, 23.5, 23.3,
17.7; HRMS m/z (EI) [M]+ calcd for C19H26O, 270.1984; found, 270.1969.
7. Horn, D. E. V.; Negishi, E. J. Am. Chem. Soc. 1978, 100, 2252–2254.
8. Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-
Interscience: New York, 2002; Vol. 2, pp 2399–2423.
9. When the same conditions as entry 2 in table was applied to the Michael
addition
of
(4S,20E)-3-(60-TBDPS-30-methylhex-20-enoyl)-4-phenyloxazo-
13. Data for synthetic (+)-bakuchiol: ½a D18
ꢂ
+26.0 (c 0.45, CHCl3); 1H NMR (CDCl3,
lidin-2-one (12) that lacked the methyl group in 3, the reaction proceeded
smoothly to furnish a sole stereoisomer 13 in 88% yield (Scheme 4). This result
is consistent with the Williums’s result.6f In the case of 3, the presence of the b-
methyl group presumably interfered with the conjugated attack of
vinylcuprate, favoring the 1,2-addition of excess vinyl Grignard reagents to
the oxazolidione auxiliary.
300 MHz) d 7.24 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 6.25 (d, J = 16.2 Hz,
1H), 6.05 (d, J = 16.2 Hz, 1H), 5.87 (dd, J = 10.8, 17.4 Hz, 1H), 5.10 (quint. t,
J = 1.5, 6.9 Hz, 1H), 5.03 (dd, J = 1.2, 10.8 Hz, 1H), 5.00 (dd, J = 1.2, 17.4 Hz, 1H),
1.95 (dt, J = 7.5, 9.0 Hz, 2H), 1.67 (d, J = 0.9 Hz, 3H), 1.59 (s, 3H), 1.48 (m, 2H),
1.19 (s, 3H); 13C NMR (CDCl3, 75 MHz) d 154.7, 146.0, 135.9, 131.4, 130.9,
127.4, 126.5, 124.9, 115.4, 112.0, 42.6, 41.4, 25.8, 23.4, 23.3, 17.7; HRMS m/z
(EI) [M]+ calcd for C18H24O, 256.1821; found, 256.1827.
10. Typical procedure for asymmetric 1,4-addition: PhLi (ca. 1.9 mol/L in n-butyl
ether, 13.4 mL, 25.5 mmol) was added to tetravinyltin (1.38 mL, 7.60 mmol) at