2648
M.S. Balakrishna et al. / Journal of Organometallic Chemistry 692 (2007) 2642–2648
with 0.5 equivalent of [PdCl(g3-C3H5)]2 produces Pd/Rh
complex 27, whereas the reaction between 12 and CuX
(X = Cl, Br, I) produces tetranuclear (2RhI/2CuI) com-
plexes (28–30) containing rhombic [Cu(l-X)2Cu] units as
shown in Scheme 6. The 31P NMR spectrum of 26 consists
of two sets of doublet of doublets centered at 104.7 and
94.1 ppm assigned to gold- and rhodium-coordinated phos-
phorus centers respectively. The gold bound phosphorus
Acknowledgements
We are grateful to the Department of Science and Tech-
nology (DST), New Delhi, for funding and Prof. J. T. Ma-
gue for X-ray diffraction studies.
References
3
2
[1] (a) G.G. Briand, T. Chivers, M. Krahn, Coordi. Chem. Rev. 233–234
(2002) 237, and ref. therein;
center shows JRhP of 5.5 Hz along with a JPP of 30 Hz.
1
The rhodium bound phosphorus center shows JRhP cou-
(b) J.K. Brask, T. Chivers, M.L. Krahn, M. Parvez, Inorg. Chem. 38
(1999) 290.
[2] (a) L. Stahl, Coord. Chem. Rev. 210 (2000) 203, and ref. therein;
(b) D.F. Moser, L. Grocholl, L. Stahl, R.J. Staples, Dalton Trans.
(2003) 1402;
pling of 247 Hz. The Pd/Rh complex 27 shows a doublet
at 130.6 ppm (2JPP = 37 Hz) for palladium coordinated
phosphorus center and a doublet of doublets centered at
94.1 ppm (1JRhP = 240 Hz) is assigned to rhodium bound
phosphorus center. The complexes 28–30 show broad sing-
lets in the range 90–93 ppm for copper coordinated phos-
phorus centers and the rhodium bound phosphorus
centers appear as doublets in the region 91–93 ppm with
(c) I. Schranz, G.R. Lief, C.J. Carrow, D.C. Haggenson, L. Grocholl,
L. Stahl, R.J. Staples, R. Bhoomishankar, A. Steiner, Dalton Trans.
(2005) 3307.
[3] (a) S.S. Kumaravel, S.S. Krishnamurthy, T.S. Cameron, A. Linden,
Inorg. Chem. 27 (1988) 4546;
1
(b) M. Chakravarty, P. Kommana, K.C. Kumaraswamy, Chem.
Commun. (2005) 5396;
(c) P. Kommanna, J.J. Vittal, K.C. Kumaraswamy, Inorg. Chem. 39
(2000) 4384;
an average JRhP of 235 Hz. The structures of complexes
26 and 28 have been confirmed by single crystal X-ray stud-
ies [10–12].
(d) N. Burford, T.S. Cameron, K.d. Conroy, B. Ellis, M. Lumsden,
C.L.B. McDonald, R. McDonald, A.D. Phillips, P.J. Ragogna,
R.W. Schurko, D. Walsh, R.E. Wasylishen, J. Am. Chem. Soc. 124
(2002) 14012;
8. Summary
(e) F. Garcia, J.M. Goodman, R.A. Kowenicki, M. MacPartlin, L.
Riera, M.A. Silva, A. Wirsing, D.S. Wright, Dalton Trans. (2005) 1764;
(f) F. Garcia, R.A. Kowenicki, L. Riera, D.S. Wright, Dalton Trans.
(2005) 2495;
(g) F. Garcia, R.A. Kowenicki, I. Kuzu, L. Riera, M. MacPartlin, D.S.
Wright, Dalton Trans. (2004) 2904;
(h) F. Garcia, J.M. Goodman, R.A. Kowenicki, I. Kuzu, M. MacPart-
lin, M.A. Silva, L. Riera, A.D. Woods, D.S. Wright, Chem. Eur. J. 10
(2004) 6066, and ref. therein.
The cyclodiophosphazanes containing donor function-
alities exhibit versatile coordination properties. The exclu-
sive formation of either cis or trans palladium(II)
complexes was achieved by using appropriate metal
reagents. The reactions with RhI, IrI, PdII and RuII metal
dimers selectively afforded the corresponding mononu-
clear complexes which are effectively used as metallo-
ligands to generate a series of heterometallic complexes.
Cyclodiphosphzanes containing ether functionalities were
found to preferably form tetranuclear rhodium(I) com-
plexes, whereas those with thioether and amine function-
alities gave the corresponding bischelated complexes. The
latter complexes are the first examples of cyclodiphospha-
zanes performing as eight-electron donor tetradenate
ligands. The CuI coordination polymers of cyclodiphos-
phazanes undergo rare reversible transformations into
the corresponding mononuclear complexes. Although,
cis conformers are not kinetically suited for extending
the linear propagation to give the coordination polymers,
the formation of rhombic [Cu(l-X)]2 units during the
reaction and their flexible orientations and variable coor-
dination numbers of CuI centers facilitated the formation
of coordination polymers. Further preparation of polynu-
clear complexes and high nuclearity clusters of platinum
metals is in progress.
[4] (a) M.S. Balakrishna, V.S. Reddy, S.S. Krishnamurthy, J.F. Nixon,
J.C.T.R.B. St. Laurent, Coord. Chem. Rev. 129 (1994) 1, and
references there in;
(b) V.S. Reddy, S.S. Krishnamurthy, M. Netaji, J. Chem. Soc.,
Dalton Trans. (1994) 2661;
(c) V.S. Reddy, S.S. Krishnamurthy, M. Netaji, J. Chem. Soc.,
Dalton Trans. (1995) 1933.
[5] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Organometallics
24 (2005) 3780.
[6] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 44
(2005) 7925.
[7] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45
(2006) 5893.
[8] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Inorg. Chem. 45
(2006) 6678.
[9] M.S. Balakrishna, B.D. Santarsiero, R.G. Cavell, Inorg. Chem. 33
(1994) 3079.
[10] P. Chandrasekaran, Ph. D. Thesis, Indian Institute of Technology
Bombay, Mumbai, 2006.
[11] P. Chandrasekaran, J.T. Mague, M.S. Balakrishna, Unpublished results.
[12] R. Venkateswaran, J.T. Mague, M.S. Balakrishna, Unpublished results.