N. V. S. Mudiganti et al. / Tetrahedron Letters 49 (2008) 6980–6983
6983
CHCl3; lit ½a 2D5
ꢁ
ꢀ12.9, c 0.35, CHCl3)}1h,11. This unusual formation of
1869; (f) Itokawa, H.; Qiao, Y.; Takeya, K. Phytochemistry 1991, 30, 637; (g) Kuo,
S.-C.; Chen, P.-R.; Lee, S.-W.; Chen, Z.-T. J. Chin. Chem. Soc. 1995, 42, 869; (h) El-
Hady, S.; Bukuru, J.; Kesteleyn, B.; Van Puyvelde, L.; Nguyen Van, T.; De Kimpe,
N. J. Nat. Prod. 2002, 65, 1377.
a trans-diol 7 from cis-diol 6 can be explained as follows (Scheme
3). Deprotection of the MOM-ether (+)-15 obviously results in
(+)-cis-diol 6. However, under excess acidic conditions the hydro-
xyl moiety at position 4 is protonated and easily eliminated by
an electron push mechanism starting from the electron lone pair
of the pyranyl-oxygen. In this way, a reactive charged ortho-quino-
methide intermediate 24 is formed to which water attacks and
results in the formation of the more stable trans isomer (+)-7.
2. (a) Johnson, R. A.; Sharpless, K. B. Catalytic Asymmetric Dihydroxylation. In
Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH Publishers: New York, 1993;
pp 227–272; (b) Kolb, H. C.; VanNieuwenhze, S. M.; Sharpless, K. B. Chem. Rev.
1994, 94, 2483.
3. (a) VanNieuwenhze, S. M.; Sharpless, K. B. Tetrahedron Lett. 1994, 35, 843; (b)
Wang, L.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, 7568.
4. Wang, Z-. M.; Kakiuchi, K.; Sharpless, K. B. J. Org. Chem. 1994, 59, 6895.
5. Wang, Q.; She, X. K.; Ren, X.; Ma, J.; Pan, X. Tetrahedron: Asymmetry. 2004, 15,
29.
6. Mudiganti, N. V. S.; Claessens, S.; Habonimana, P.; De Kimpe, N. J. Org. Chem.
2008, 73, 3867.
3. Conclusion
7. Wang, X.; Lee, Y. R. Tetrahedron Lett. 2007, 48, 6275.
8. (a) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A. J. Org. Chem. 1992,
57, 2768; (b) Becker, H.; King, B.; Taniguchi, M.; Vanhessche, K. M.; Sharpless,
K. B. J. Org. Chem. 1995, 60, 3940.
The asymmetric syntheses of (ꢀ)-(3R,4R)-cis-3,4-dihydroxy-
3,4-dihydromollugin 4, (ꢀ)-(3R,4S)-trans-3,4-dihydroxy-3,4-dihy-
dromollugin 5, (+)-(3S,4S)-cis-3,4-dihydroxy-3,4-dihydromollugin
6 and (+)-(3S,4R)-trans-3,4-dihydroxy-3,4-dihydromollugin 7 was
achieved for the first time. Although the lower yields and side
products are the drawbacks of this protocol, the enantioselecti-
vities are good to excellent. These reactions showed that much
experimentation was necessary to achieve the dihydroxylation of
such pyranes due to side reaction at all stages of the synthetic
protocol.
9. (a) Pirkle, W. H.; Sikkenga, D. L.; Pavlin, M. S. J. Org. Chem. 1977, 42, 384; (b)
Parker, D. Chem. Rev. 1991, 91, 1441.
10. The general experimental procedure for AD of O-protected mollugin
derivatives 8–12 using AD-mixes by taking compound 12 with AD-mix-b as
a
representative example. To a stirred solution of AD-mix-b (1.4 g) in
t-BuOH:H2O (1:1 v/v, 8 ml) was added a THF solution (0.5 ml) of compound
12 (328 mg, 1 mmol) at 0 °C. After stirring the resulting solution at 0–10 °C for
24 h, a saturated solution of aqueous sodium bisulfite (10 ml) was added,
stirred for 1 h and then extracted with dichloromethane (3 ꢂ 20 ml). The
combined organic layers were washed with brine (20 ml), dried over
magnesium sulfate, and evaporated under reduced pressure. The crude
product was purified by flash column chromatography on silica gel
(petroleum ether/ethyl acetate 60/40 Rf 0.8) affording (+)-(3S,4S)-methyl
cis-3,4-dihydroxy-6-methoxymethoxy-2,2-dimethyl-3,4-dihydro-2H-benzo-
[h]-chromene-5-carboxylate 15 in 32% yield and (+)-(3S)-methyl 3-hydroxy-
6-methoxymethoxy-2,2-dimethyl-4-oxo-3,4-dihydro-2H-benzo[h]-chromene-
5-carboxylate 16 in 5% yield (petroleum ether/ethyl acetate 80/20 Rf 0.6).
11. The experiments carried out with Pirkle alcohol as a chiral resolving agent
were not much useful in determing the enantiomeric excess of the compounds
at this stage.
References and notes
1. (a) Inoue, K.; Shiobara, Y.; Nayenshiro, H.; Inouye, H.; Wilson, G.; Zenk, M. H.
Phytochemistry 1984, 73, 307; (b) Gonzalez, A. G.; Barroso, J. T.; Cardona, R. J.;
Medina, J. M.; Rodriguez Luis, F. An. Quim. 1977, 73, 538; (c) Itokawa, H.; Qiao,
Y.; Takeya, K. Phytochemistry 1989, 28, 3465; (d) Koyama, J.; Ogura, T.;
Tagahara, K.; Konoshima, T.; Kozuka, M. Phytochemistry 1992, 31, 2907; (e)
Itokawa, H.; Ibraheim, Z. Z.; Qiao, Y.; Takeya, K. Chem. Pharm. Bull. 1993, 41,