Ousaka and Inai
along a helical chain plays a key role for nucleation, propagation,
and termination of a one-handed helicity ubiquitous in asymmetric
living organisms.2-4
sense triggered by chiral stimulus. The N-terminal-free segment
binds chiral molecules such as N-terminally blocked amino acid
and peptide acid. A terminal twist originating in the formation
of the chiral complex gives rise to energy imbalance between
the two enantiomeric helices.12 Dynamic chiral information at
the N-terminal site induces the preference for a helical sense.
We have figuratively termed this phenomenon the noncovalent
chiral domino effect (NCDE).10b,12 Helix-sense induction of an
achiral linear segment also occurs through covalent incorporation
Control of helical sense has been extensively investigated
using artificial helical models based on achiral monomer
units.1,5-8 Here the helical sense of such an optically inactive
segment is induced by covalent or noncovalent chiral stimuli.1,5-8
These leading studies provide significant guidance as to how
chiral information transfers along a molecular chain to generate
a one-handed helix. Such an optically inactive helix usually
involves chromophoric groups in the main chain or side chain.
Electronic circular dichroism (CD) spectroscopy that focuses
on these chromophores can clarify a helical sense induced in
the backbone itself. Furthermore, elegant studies on artificial
helical backbones have been reported in which helix propagation
or reversal is visually detected.9 However, chiral stimulus is
hardly traceable on biopolymer frameworks, especially on
protein backbones, because their chemically chiral sequences
prevent us from monitoring transfer of site-specific chiral
information.
(7) For transfer of chiral information in supramolecular assemblies, see: (a)
Smulders, M. M. J.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc.
2008, 130, 606–611. (b) van Gestel, J.; Palmans, A. R. A.; Titulaer, B.;
Vekemans, J. A. J. M.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 5490–5494.
(c) Lauceri, R.; Raudino, A.; Scolaro, L. M.; Micali, N.; Purrello, R. J. Am.
Chem. Soc. 2002, 124, 894–895. (d) Mammana, A.; D’Urso, A.; Lauceri, R.;
Purrello, R. J. Am. Chem. Soc. 2007, 129, 8062–8063. (e) Prins, L. J.;
Timmerman, P.; Reinhoudt, D. N. J. Am. Chem. Soc. 2001, 123, 10153–10163.
(8) For biorelated helical backbones, see: (a) Kozlov, I. A.; Orgel, L. E.;
Nielsen, P. E. Angew. Chem., Int. Ed. 2000, 39, 4292–4295. (b) Mazaleyrat,
J.-P.; Wright, K.; Gaucher, A.; Toulemonde, N.; Wakselman, M.; Oancea, S.;
Peggion, C.; Formaggio, F.; Setnicˇka, V.; Keiderling, T. A.; Toniolo, C. J. Am.
Chem. Soc. 2004, 126, 12874–12879. (c) Benedetti, E.; Saviano, M.; Iacovino,
R.; Pedone, C.; Santini, A.; Crisma, M.; Formaggio, F.; Toniolo, C.; Broxterman,
Q. B.; Kamphuis, J. Biopolymers 1998, 46, 433–443. (d) Benedetti, E.; Saviano,
M.; Iacovino, R.; Crisma, M.; Formaggio, F.; Toniolo, C. Z. Kristallogr. 1999,
214, 160–166. (e) Crisma, M.; Valle, G.; Formaggio, F.; Toniolo, C. Z.
Kristallogr. 1998, 213, 599–604. (f) Pengo, B.; Formaggio, F.; Crisma, M.;
Toniolo, C.; Bonora, G. M.; Broxterman, Q. B.; Kamphuis, J.; Saviano, M.;
Iacovino, R.; Rossi, F.; Benedetti, E. J. Chem. Soc., Perkin Trans. 2 1998, 1651–
1657. (g) Pieroni, O.; Fissi, A.; Pratesi, C.; Temussi, P. A.; Ciardelli, F. J. Am.
Chem. Soc. 1991, 113, 6338–6340. (h) Tuzi, A.; Ciajolo, M. R.; Guarino, G.;
Temussi, P. A.; Fissi, A.; Pieroni, O. Biopolymers 1993, 33, 1111–1121. (i)
Pieroni, O.; Fissi, A.; Pratesi, C.; Temussi, P. A.; Ciardelli, F. Biopolymers 1993,
33, 1–10. (j) Ramagopal, U. A.; Ramakumar, S.; Joshi, R. M.; Chauhan, V. S.
J. Pept. Res. 1998, 52, 208–215.
(9) (a) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem., Int. Ed. 2002,
41, 1705–1709. (b) Sakurai, S.; Ohsawa, S.; Nagai, K.; Okoshi, K.; Kumaki, J.;
Yashima, E. Angew. Chem., Int. Ed. 2007, 46, 7605–7608. (c) Sakurai, S.; Okoshi,
K.; Kumaki, J.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 5650–5651. (d) Maeda,
T.; Furusho, Y.; Sakurai, S.; Kumaki, J.; Okoshi, K.; Yashima, E. J. Am. Chem.
Soc. 2008, 130, 7938–7945. (e) Shinohara, K.; Yasuda, S.; Kato, G.; Fujita, M.;
Shigekawa, H. J. Am. Chem. Soc. 2001, 123, 3619–3620.
(10) (a) Inai, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T.; Oshikawa, T.;
Yamashita, M. J. Am. Chem. Soc. 2000, 122, 11731–11732. (b) Inai, Y.; Ousaka,
N.; Okabe, T. J. Am. Chem. Soc. 2003, 125, 8151–8162. (c) Ousaka, N.; Inai,
Y.; Okabe, T. Biopolymers 2006, 83, 337–351. (d) Inai, Y.; Hirano, T. ITE Lett.
Batteries, New Technol. Med. 2003, 4, 485–488. (e) Inai, Y.; Ousaka, N.;
Ookouchi, Y. Biopolymers 2006, 82, 471–481.
We have proposed noncovalent chiral induction in optically
inactive helical peptides as a protein-mimicking backbone.10-12
Such sequences are composed primarily of unusual achiral
R-amino acids, whereby we can extract information of a helix
(1) For elegant articles of helical polymers, see: (a) Hill, D. J.; Mio, M. J.;
Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. ReV. 2001, 101, 3893–4011.
(b) Green, M. M.; Park, J.-W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger,
R. L. B.; Selinger, J. V. Angew. Chem., Int. Ed. 1999, 38, 3138–3154. (c) Nakano,
T.; Okamoto, Y. Chem. ReV. 2001, 101, 4013–4038. (d) Yashima, E.; Maeda,
K.; Nishimura, T. Chem. Eur. J. 2004, 10, 42–51. (e) Brunsveld, L.; Folmer,
B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. ReV. 2001, 101, 4071–4097. (f)
Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M.
Chem. ReV. 2001, 101, 4039–4070. (g) Dolain, C.; Le´ger, J.-M.; Delsuc, N.;
Gornitzka, H.; Huc, I. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 16146–16151.
(2) (a) Aurora, R.; Srinivasan, R.; Rose, G. D. Science 1994, 264, 1126–
1130. (b) Schellman, C. In Protein Folding; Jaenicke, R., Ed.; North-Holland
Biomedical Press, Elsevier: Amsterdam, 1980; pp 53-61. (c) Sagermann, M.;
Mårtensson, L.-G.; Baase, W. A.; Matthews, B. W. Protein Sci. 2002, 11, 516–
521. (d) Jime´nez, M. A.; Mun˜oz, V.; Rico, M.; Serrano, L. J. Mol. Biol. 1994,
242, 487–496. (e) Harper, E. T.; Rose, G. D. Biochemistry 1993, 32, 7605–
7609. (f) Kim, P. S.; Baldwin, R. L. Nature 1984, 307, 329–334. (g) Storrs,
R. W.; Truckses, D.; Wemmer, D. E. Biopolymers 1992, 32, 1695–1702. (h)
Lawrence, J. R.; Johnson, W. C. Biophys. Chem. 2002, 101-102, 375–385. (i)
Monticelli, L.; Tieleman, D. P.; Colombo, G. J. Phys. Chem. B 2005, 109, 20064–
20067. For C-terminal hydrogen-bonding patterns of helical model peptides, see
also: (j) Datta, S.; Uma, M. V.; Shamala, N.; Balaram, P. Biopolymers 1999,
50, 13–22. (k) Benedetti, E.; Di Blasio, B.; Pavone, V.; Pedone, C.; Santini, A.;
Bavoso, A.; Toniolo, C.; Crisma, M.; Sartore, L. J. Chem. Soc., Perkin Trans.
2 1990, 1829–1837.
(11) For the control of helix sense of sequence containing chiral residue,
see: (a) Inai, Y.; Ishida, Y.; Tagawa, K.; Takasu, A.; Hirabayashi, T. J. Am.
Chem. Soc. 2002, 124, 2466–2473. (b) Inai, Y.; Komori, H.; Takasu, A.;
Hirabayashi, T. Biomacromolecules 2003, 4, 122–128. (c) Inai, Y.; Komori, H.
Biomacromolecules 2004, 5, 1231–1240. (d) Komori, H.; Inai, Y. J. Org. Chem.
2007, 72, 4012–4022.
(3) For insightful simulation of heterochiral/homochiral helices, see: (a)
Nanda, V.; DeGrado, W. F. J. Am. Chem. Soc. 2004, 126, 14459–14467. (b)
Nanda, V.; DeGrado, W. F. J. Am. Chem. Soc. 2006, 128, 809–816.
(4) Kuroda, R. Enantiomer 2000, 5, 439–450.
(12) Inai, Y.; Komori, H.; Ousaka, N. Chem. Rec. 2007, 7, 191–202.
(13) (a) Ousaka, N.; Inai, Y. J. Am. Chem. Soc. 2006, 128, 14736–14737.
(b) Inai, Y.; Ashitaka, S.; Hirabayashi, T. Polym. J. 1999, 31, 246–253.
(14) Aib14a-h or ∆ZPhe14i-p residues incorporated into a peptide sequence
tend to promote the 310-/R-helical propensity: (a) Karle, I. L.; Gopi, H. N.;
Balaram, P. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 13946–13951. (b)
Venkatraman, J.; Shankaramma, S. C.; Balaram, P. Chem. ReV. 2001, 101, 3131–
3152. (c) Karle, I. L.; Flippen-Anderson, J. L.; Uma, K.; Balaram, H.; Balaram,
P. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 765–769. (d) Benedetti, E.; Bavoso,
A.; Di Blasio, B.; Pavone, V.; Pedone, C.; Crisma, M.; Bonora, G. M.; Toniolo,
C. J. Am. Chem. Soc. 1982, 104, 2437–2444. (e) Yanagisawa, K.; Morita, T.;
Kimura, S. J. Am. Chem. Soc. 2004, 126, 12780–12781. (f) Okuyama, K.; Saga,
Y.; Nakayama, M.; Narita, M. Biopolymers 1991, 31, 975–985. (g) Toniolo, C.;
Benedetti, E. Trends Biochem. Sci. 1991, 16, 350–353. (h) Toniolo, C.; Bonora,
G. M.; Bavoso, A.; Benedetti, E.; Di Blasio, B.; Pavone, V.; Pedone, C.
Biopolymers 1983, 22, 205–215. (i) Rajashankar, K. R.; Ramakumar, S.;
Chauhan, V. S. J. Am. Chem. Soc. 1992, 114, 9225–9226. (j) Jain, R. M.;
Rajashankar, K. R.; Ramakumar, S.; Chauhan, V. S. J. Am. Chem. Soc. 1997,
119, 3205–3211. (k) Ramagopal, U. A.; Ramakumar, S.; Sahal, D.; Chauhan,
V. S. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 870–874. (l) Ciajolo, M. R.; Tuzi,
A.; Pratesi, C. R.; Fissi, A.; Pieroni, O. Biopolymers 1990, 30, 911–920. (m)
Ciajolo, M. R.; Tuzi, A.; Pratesi, C. R.; Fissi, A.; Pieroni, O. Biopolymers 1992,
32, 717–724. (n) Mitra, S. N.; Dey, S.; Karthikeyan, S.; Singh, T. P. Biopolymers
1997, 41, 97–105. (o) Chauhan, V. S.; Uma, K.; Kaur, P.; Balaram, P.
Biopolymers 1989, 28, 763–771. (p) Gupta, A.; Bharadwaj, A.; Chauhan, V. S.
J. Chem. Soc., Perkin Trans. 2 1990, 1911–1916.
(5) For leading examples of covalent chiral effects on helix sense, see: (a)
Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O’Leary, D. J.; Willson,
G. J. Am. Chem. Soc. 1989, 111, 6452–6454. (b) Tian, G.; Lu, Y.; Novak, B. M.
J. Am. Chem. Soc. 2004, 126, 4082–4083. (c) Tang, H.-Z.; Lu, Y.; Tian, G.;
Capracotta, M. D.; Novak, B. M. J. Am. Chem. Soc. 2004, 126, 3722–3723. (d)
Dolain, C.; Jiang, H.; Le´ger, J.-M.; Guionneau, P.; Huc, I. J. Am. Chem. Soc.
2005, 127, 12943–12951. (e) Okamoto, Y.; Matsuda, M.; Nakano, T.; Yashima,
E. Polym. J. 1993, 25, 391–396. (f) Maeda, K.; Okamoto, Y. Polym. J. 1998,
30, 100-105. (g) Nath, G. Y.; Samal, S.; Park, S.-Y.; Murthy, C. N.; Lee, J.-S.
Macromolecules 2006, 39, 5965–5966. (h) Tabei, J.; Shiotsuki, M.; Sato, T.;
Sanda, F.; Masuda, T. Chem. Eur. J. 2005, 11, 3591-3598. (i) Kamer, P. C. J.;
Cleij, M. C.; Nolte, R. J. M.; Harada, T.; Hezemans, A. M. F.; Drenth, W. J. Am.
Chem. Soc. 1988, 110, 1581–1587.
(6) (a) Prince, R. B.; Barnes, S. A.; Moore, J. S. J. Am. Chem. Soc. 2000,
122, 2758–2762. (b) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem.
Soc. 1997, 119, 6345–6359. (c) Yashima, E.; Maeda, K.; Okamoto, Y. Nature
1999, 399, 449–451. (d) Maeda, K.; Ishikawa, M.; Yashima, E. J. Am. Chem.
Soc. 2004, 126, 15161–15166. (e) Schlitzer, D. S.; Novak, B. M. J. Am. Chem.
Soc. 1998, 120, 2196–2197. (f) Maurizot, V.; Dolain, C.; Huc, I. Eur. J. Org.
Chem. 2005, 2005, 1293–1301. (g) Majidi, M. R.; Kane-Maguire, L. A. P.;
Wallace, G. G. Polymer 1994, 35, 3113–3115. (h) Green, M. M.; Khatri, C.;
Peterson, N. C. J. Am. Chem. Soc. 1993, 115, 4941–4942. (i) Nakashima, H.;
Koe, J. R.; Torimitsu, K.; Fujiki, M. J. Am. Chem. Soc. 2001, 123, 4847–4848.
1430 J. Org. Chem. Vol. 74, No. 4, 2009