ORGANIC
LETTERS
2008
Vol. 10, No. 24
5621-5624
Diastereoselective Oxidative
Carbon-Carbon Bond Formation via
Silyl Bis-enol Ethers
Christopher T. Avetta, Jr., Leah C. Konkol, Carla N. Taylor, Karen C. Dugan,
Charlotte L. Stern, and Regan J. Thomson*
Department of Chemistry, Northwestern UniVersity, 2145 Sheridan Road,
EVanston, Illinois 60208
Received October 30, 2008
ABSTRACT
Diisopropylsilyl bis-enol ethers are shown to be powerful intermediates for the diastereoselective dimerization and cross-coupling of cyclic
ketones. The trends observed for the oxidative coupling of a range of different dialkylsilyl bis-enol ethers derived from cyclohexanone are
rationalized by invoking a stereochemical model based on a Thorpe-Ingold effect.
Reliable bond-forming reactions that produce multiple ste-
reocenters are of significant strategic value for the synthesis
of complex natural products since retrosynthetic application
of such transformations allows for rapid clearance of
stereocenters while simultaneously enforcing a convergent
synthesis plan.1 As part of our program directed toward
synthesizing bioactive polycyclic molecules, we sought to
develop methods to effect the stereocontrolled oxidative
coupling of cyclic ketones and thus provide a convergent
route to linked bicyclic ring systems prevalent in numerous
natural products, such as the lomaiviticins.2 The oxidative
coupling of enolates has been known for over 70 years,3 but
it is only in relatively recent times that synthetically useful
procedures for cross-coupling have emerged.4 Recently, we
demonstrated the utility of silyl bis-enol ethers for controlled
cross-coupling and quaternary stereocenter generation.5
Despite these advances, it is still difficult to conduct the
cross-coupling of substrates with similar oxidation potentials,
and diastereoselective cross-coupling remains largely unde-
veloped.
Previous literature reports have shown that the dimerization
of lithium enolates or trimethylsilyl enol ethers derived from
cyclohexanone produce the 1,4-diketone in modest yield and
with low levels of diastereocontrol.6 Schmittel and co-
workers have shown that silicon-tethered enol silanes may
be used to prepare the dimer of propiophenone with good
(1) Corey, E. J.; Cheng, X-M. The Logic of Chemical Synthesis; John
Wiley & Sons: New York, 1989.
(2) He, H. Y.; Ding, W. D.; Bernan, V. S.; Richardson, A. D.; Ireland,
C. M.; Greenstein, M.; Ellestad, G. A.; Carter, G. T. J. Am. Chem. Soc.
2001, 123, 5362–5363.
(3) Ivanoff, D.; Spassoff, A. Bull. Soc. Chim. Fr. 1935, 2, 76–78.
(4) (a) Baciocchi, E.; Casu, A.; Ruzziconi, R. Tetrahedron Lett. 1989,
30, 3707–3710. (b) Fujii, T.; Hirao, T.; Ohshiro, Y. Tetrahedron Lett. 1992,
33, 5823–5826. (c) Narasaka, K.; Okauchi, T.; Tanaka, K.; Murakami, M.
Chem. Lett. 1992, 2099–2102. (d) Baran, P. S.; DeMartino, M. P. Angew.
Chem., Int. Ed. 2006, 45, 7083–7086. (e) Jang, H. Y.; Hong, J. B.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 7004–7005. (f) Beeson,
T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C.
Science 2007, 316, 582–585. (g) DeMartino, M. P.; Chen, K.; Baran, P. S.
J. Am. Chem. Soc. 2008, 130, 11546–11560.
(5) Clift, M. D.; Taylor, C. N.; Thomson, R. J. Org. Lett. 2007, 9, 4667–
4669.
(6) (a) Ito, Y.; Konoike, T.; Saegusa, T. J. Am. Chem. Soc. 1975, 97,
649–651. (b) Kobayashi, Y.; Taguchi, T.; Tokuno, E. Tetrahedron Lett.
1977, 3741–3742. (c) Fujii, T.; Hirao, T.; Ohshiro, Y. Tetrahedron Lett.
1992, 33, 5823–5826. (d) Hoffmann, H. M. R.; Mu¨nnich, I.; Nowitzki, O.;
Stucke, H.; Williams, D. J. Tetrahedron 1996, 52, 11783–11798.
(7) (a) Schmittel, M.; Burghart, A.; Malisch, W.; Reising, J.; Sollner,
R. J. Org. Chem. 1998, 63, 396–400. (b) Schmittel, M.; Haeuseler, A. J.
Organomet. Chem. 2002, 661, 169–179.
10.1021/ol802516z CCC: $40.75
Published on Web 11/18/2008
2008 American Chemical Society