C O M M U N I C A T I O N S
Table 2. Enantioselective Allene Hydroacylation: Allene Scopea
In summary, by employing 1,3-disubstituted allenes and ꢀ-S-
aldehydes, we have developed the first efficient and highly
enantioselective intermolecular carbon-carbon double-bond hy-
droacylation process. Preliminary experiments suggest a dynamic
kinetic asymmetric transformation is in operation; a detailed
mechanistic study is underway.
entry
R1
R2
R3
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
Pent
Hex
But
Et
Me
Bn
Hex
Et
Hex
Et
Ph
Ph
Ph
Ph
Ph
Ph
H
H
H
H
H
H
H
H
H
H
H
H
Ph
81
88
83
76
93
77
95
94
79
89
56
64
25
92
94
93d
91
60
93
94
90
96
96
90
89
94
Acknowledgment. This work was supported by the EPSRC and
AstraZeneca.
Supporting Information Available: Experimental procedures and
full characterization for all compounds. This material is available free
4-F3C-C6H4
4-F3C-C6H4
3,5-F3C-C6H4
3,5-F3C-C6H4
4-Me-C6H4
4-Me-C6H4
Ph
9
References
10
11
12
13
Hex
Et
Hex
(1) Sakai, K.; Ide, J.; Oda, O.; Nakamura, N. Tetrahedron Lett. 1972, 1287.
(2) Selected examples: (a) Fairlie, D. P.; Bosnich, B. Organometallics 1988,
7, 936. (b) Fairlie, D. P.; Bosnich, B. Organometallics 1988, 7, 946. (c)
Gable, K. P.; Benz, G. A. Tetrahedron Lett. 1991, 32, 3473. (d) Sattelkau,
T.; Eilbracht, P. Tetrahedron Lett. 1998, 39, 9647. (e) Morgan, J. P.; Kundu,
K.; Doyle, M. P. Chem. Commun. 2005, 3307.
(3) Selected examples: (a) James, B. R.; Young, C. G. J. Chem. Soc., Chem.
Commun. 1983, 1215. (b) Bosnich, B. Acc. Chem. Res. 1998, 31, 667, and
references therein. (c) Tanaka, M.; Imai, M.; Fujio, M.; Sakamoto, E.;
Takahashi, M.; Eto-Kato, Y.; Wu, X. M.; Funakoshi, K.; Sakai, K.;
Suemune, H. J. Org. Chem. 2000, 65, 5806, and references therein. (d)
Kundu, K.; McCullagh, J. V.; Morehead, A. T., Jr. J. Am. Chem. Soc. 2005,
127, 16042.
(4) Examples: (a) Schwartz, J.; Cannon, J. B. J. Am. Chem. Soc. 1974, 96,
4721. (b) Vora, K. P.; Lochow, C. F.; Miller, R. G. J. Organomet. Chem.
1980, 192, 257. (c) Marder, T. B.; Roe, D. C.; Milstein, D. Organometallics
1988, 7, 1451. (d) Kondo, T.; Tsuji, Y.; Watanabe, Y. Tetrahedron Lett.
1987, 28, 6229. (e) Lenges, C. P.; White, P. S.; Brookhart, M. J. Am. Chem.
Soc. 1998, 120, 6965. (f) Roy, A. H.; Lenges, C. P.; Brookhart, M. J. Am.
Chem. Soc. 2007, 129, 2082. (g) Shibahara, F.; Bower, J. F.; Krische, M. J.
J. Am. Chem. Soc. 2008, 130, 14120. (h) Omura, S.; Fukuyama, T.;
Horiguchi, J.; Murakami, Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094.
(5) (a) Suggs, J. W. J. Am. Chem. Soc. 1978, 100, 640. (b) Jun, C.-H.; Lee,
D.-Y.; Lee, H.; Hong, J.-B. Angew. Chem., Int. Ed. 2000, 39, 3070. (c)
Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (d)
Imai, M.; Tanaka, M.; Tanaka, K.; Yamamoto, Y.; Imai-Ogata, N.;
Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. J. Org. Chem.
2004, 69, 1144. (e) Tanaka, T.; Tanaka, M.; Suemune, H. Tetrahedron
Lett. 2005, 46, 6053. (f) Tanaka, K.; Shibata, Y.; Suda, T.; Hagiwara, Y.;
Hirano, M. Org. Lett. 2007, 9, 1215.
a Conditions: aldehyde (1.0 equiv), allene (2.0 equiv), [Rh(R,R)-
Me-DuPhos)]ClO4 (10 mol.%), acetone, 45 °C, 24 h. Catalyst generated
in situ from [Rh(R,R)-Me-DuPhos)(nbd)]ClO4 and H2. b Isolated yields.
c Determined by chiral HPLC. d Absolute configuration determined from
X-ray structure. See the Supporting Information for further details. All
other configurations assigned by analogy.
Scheme 1. Enantioselective Hydroacylation: Nonracemic Allene
also explored variation of the electronics of the aromatic allene
substituent; both electron-withdrawing (4-CF3, 3,5-di-CF3) and
electron-donating (4-Me) groups could be introduced with minimal
effect on the enantioselectivity of the processes, although the
more electron-rich allene was less reactive (entries 7-12). The final
example in Table 2 demonstrates the transformation remains highly
enantioselective when an achiral allene is employed, with the
indicated trisubstituted allene delivering the expected enone with
94% ee (entry 13). Unfortunately, trisubstituted allenes displayed
significantly reduced reactivity, so although good enantioselectivity
could be maintained, the yields were low (25% for this example).13
To begin to explore the nature of the observed asymmetric
processes, we repeated an example from Table 2 (entry 4) but
employed a single equivalent of racemic allene; after 48 h, the
adduct was obtained in 77% yield, with 88% ee. We also reacted
aldehyde 9 with enantiomerically enriched allene 2 using both
enantiomers of the catalyst (Scheme 1). Catalyst control was
observed in both reactions, with the two enantiomers of catalyst
delivering enantiomeric products. Importantly, allenes recovered
from both reactions had significantly reduced ee’s, with the (R,R)-
catalyst returning allene with -31% ee, and the (S,S)-catalyst
delivering allene with 33% ee.14,15 These reactions establish that
the process is not a simple kinetic resolution of the allene; a dynamic
kinetic asymmetric transformation, involving racemization of the
allene during the reaction, is a more likely explanation.
(6) For methods that do allow the use of substituted alkenes, see: refs 4d,f,g,h
and 5d,e,f.
(7) Stemmler, R. T.; Bolm, C. AdV. Synth. Catal. 2007, 349, 1185.
(8) (a) Modern Allene Chemistry; Krause, N.; Hashmi, A. S. K., Eds.; Wiley-
VCH: Weinheim, 2004. (b) Ma, S. Chem. ReV. 2005, 105, 2829.
(9) Selected recent examples: (a) Zhang, Z.; Bender, C. F.; Widenhoefer, R. A.
J. Am. Chem. Soc. 2007, 129, 14148. (b) Burks, H. E.; Liu, S.; Morken,
J. P. J. Am. Chem. Soc. 2007, 129, 8766. (c) LaLonde, R. L.; Sherry, B. D.;
Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. (d) Trost,
B. M.; Simas, A. B. C.; Plietker, B.; Ja¨kel, C.; Xie, J. Chem.sEur. J. 2005,
11, 7075.
(10) Kokubo, K.; Matsumasa, K.; Nishinaka, Y.; Miura, M.; Nomura, M. Bull.
Chem. Soc. Jpn. 1999, 72, 303.
(11) (a) Willis, M. C.; McNally, J. S.; Beswick, P. J. Angew. Chem., Int. Ed.
2004, 43, 340. (b) Willis, M. C.; Randell-Sly, H. E.; Woodward, R. L.;
Currie, G. S. Org. Lett. 2005, 7, 2249. (c) Willis, M. C.; Randell-Sly, H. E.;
Woodward, R. L.; McNally, S. J.; Currie, G. S. J. Org. Chem. 2006, 71,
5291. (d) Moxham, G. L.; Randell-Sly, H. E.; Brayshaw, S. K.; Woodward,
R. L.; Weller, A. S.; Willis, M. C. Angew. Chem., Int. Ed. 2006, 45, 7618
For an intramolecular example, see: (e) Bendorf, H. D.; Colella, C. M.;
Dixon, E. C.; Marchetti, M.; Matukonis, A. N.; Musselman, J. D.; Tiley,
T. A. Tetrahedron Lett. 2002, 43, 7031.
(12) Single regio- and geometrical isomers were observed in all cases.
(13) Trialkyl-substituted allenes delivered no hydroacylation products when
combined with aldehyde 9.
(14) Both reactions illustrated in Scheme 1 were performed for 24 h. However,
there was an observable difference in the rates of the two processes, with
the (S,S)-catalyst delivering slower reactions. Comparative times to achieve
60% conversion: (R,R)-catalyst 11 h; (S,S)-catalyst 17 h.
(15) We have established that there is no product racemization under the standard
reaction conditions.
JA8069133
9
J. AM. CHEM. SOC. VOL. 130, NO. 51, 2008 17233