Preparation of Polysubstituted Cyclopentanes
reported so far.13 In contrast to cycloaddition reactions involving
the donor-acceptor cyclopropanes with electron-rich olefins,
we are pleased to disclose in this paper a novel strategy to
construct the cyclopentane nucleus from VDCPs and electron-
deficient olefins in the presence of Tf2NH.14
TABLE 1. Optimization of the [3+2] Cycloaddition Reaction
Conditions
Results and Discussion
entrya Bronsted acid
x
solvent
time
1 h
12 h
48 h
48 h
1 h
yield (%)b of 3a
At the outset of this study, the [3+2] cycloaddition of VDCP
1a with 1.5 equiv of methyl vinyl ketone (MVK) 2a was
examined by using several Brønsted acids in dichloromethane
and the results of these experiments are presented in Table 1.
Treatment of VDCP 1a with MVK 2a in the presence of triflic
imide (Tf2NH, 10 mol %) in CH2Cl2 at room temperature (25
°C) for 1 h afforded the polysubstituted cyclopentane 3a in 95%
yield (Table 1, entry 1). However, using other Brønsted acids,
such as trifluoromethanesulfonic acid (TfOH), p-methylbenze-
nesulfonic acid (p-TSA), and methanesulfonic acid (MeSO3H),
resulted in 3a in lower yields and most of 1a was recovered,
although TfOH is very effective in the [3+2] cycloaddition
reactions of diarylvinylidenecyclopropanes with nitriles12c (Table
1, entries 2-4). Since Tf2NH as the strong Brønsted acid is
very effective in some catalytic carbon-carbon bond-forming
reactions,15-18 the employed amount of Tf2NH was examined
in this cycloaddition. It was found that using 4.0 mol % of
1
Tf2NH
TfOH
10 CH2Cl2
10 CH2Cl2
10 CH2Cl2
10 CH2Cl2
4
4
4
4
4
4
4
4
95
16
8
11
97(95)f
68
_g
_g
3
2c
3d
4e
5
p-TSA
MeSO3H
Tf2NH
Tf2NH
Tf2NH
Tf2NH
Tf2NH
Tf2NH
Tf2NH
Tf2NH
CH2Cl2
toluene
acetonitrile 4 h
THF
Et2O
CH2Cl2
CH2Cl2
CH2Cl2
6
7
8
9
4 h
4 h
4 h
10 min
10 min
1 h
10h
11i
12j
94
97
95
a Reaction conditions: VDCP (0.18 mmol) and MVK (1.5 equiv) were
dissolved in dry solvent (2.0 mL), Bronsted acid (x mol %) was added,
then the mixtures were stirred for different times at room temperature.
b Isolated yield. c 50% of 1a was recovered. d 62% of 1a was recovered.
e 58% of 1a was recovered. f The mixture was stirred for 10 min. g 3a
was not detected by TLC plates. h 2.0 equiv of MVK was added. i 1.2
equiv of MVK was added. j 1.0 equiv of MVK was added. MVK )
methyl vinyl ketone.
(8) For leading references, see:(a) Danheiser, R. L.; Carini, D. J.; Basak, A.
J. Am. Chem. Soc. 1981, 103, 1604–1606. (b) Trost, B. M. Angew. Chem., Int.
Ed. 1986, 25, 1–20. (c) Schore, N. E. Chem. ReV. 1988, 88, 1081–1119. (d)
Little, R. D. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I.,
Eds.; Pergamon: New York, 1991; Vol. 5, pp 239-270. (e) Chan, D. M. T. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
New York, 1991, Vol. 5, pp 271-314. (f) Yamago, S.; Ejiri, S.; Makamura,
M.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 5344–5345. (g) Lautens, M.;
Klute, N.; Tam, W. Chem. ReV. 1996, 96, 59–92. (h) Knolker, H.; Prakt, J.
J. Chem./Chem.-Ztg. 1997, 339, 304–314. (i) Barluenga, J.; Tomas, M.;
Ballesteros, A.; Santamaria, J.; Brillet, C.; Pinera-Nicholas, A.; Vazquez, A. J.-
T. J. Am. Chem. Soc. 1999, 121, 4516–4517. (j) Davies, H. M. L.; Xiang, B.;
Kong, N.; Stefford, D. G. J. Am. Chem. Soc. 2001, 123, 7461–7462. (k) Kitagawa,
O.; Miyaji, S.; Sakuma, C.; Taguchi, T. J. Org. Chem. 2004, 69, 2607–2610. (l)
Methot, J. C.; Roush, W. R. AdV. Synth. Catal. 2004, 346, 1035–1050. (m)
Gibson, S. E.; Lewis, S. E.; Mainolfi, N. J. Organomet. Chem. 2004, 689, 3873–
3890. (n) Wu, Y. T.; Kurahashi, T.; De Meijere, A. J. Organomet. Chem. 2005,
690, 5900–5911. (o) Herath, A.; Montgomery, J. J. Am. Chem. Soc. 2006, 128,
14030–14031. (p) Struebing, D.; Beller, M. Top. Organomet. Chem. 2006, 18,
165–178. (q) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W. J. Am. Chem. Soc.
2007, 129, 3520–3521. (r) Huang, X.; Zhang, L. J. Am. Chem. Soc. 2007, 129,
6398–6399. (s) Barluenga, J.; Barrio, P.; Riesgo, L.; Lopez, L. A.; Tomas, M.
J. Am. Chem. Soc. 2007, 129, 14422–14426.
(9) Some leading examples of intermolecular [3+2] cycloaddition of D-A
cyclopropanes to synthesize cyclopentanes: (a) Saigo, K.; Shimada, S.; Hash-
imoto, Y.; Hasegawa, M. Chem. Lett. 1990, 109, 3–1096. (b) Komatusu, M.;
Suehiro, I.; Horiguchi, Y.; Kuwajima, I. Synlett 1991, 771–773. (c) Horiguchi,
Y.; Suehiro, I.; Sasaki, A.; Kuwajima, I. Tetrahedron Lett. 1993, 34, 6077–
6080.
FIGURE 1. ORTEP drawing of 3a.
(10) Recent examples for [3+2] cycloaddition of D-A cyclopropanes to give
cyclopentanes: (a) Yadav, V. K.; Balamurugan, R. Org. Lett. 2001, 3, 2717–
2719. (b) Yadav, V. K.; Sriramurthy, V. Angew. Chem., Int. Ed. 2004, 43, 2669–
2671.
(11) Takasu, K.; Nagao, S.; Ihara, M. AdV. Synth. Catal. 2006, 348, 2376–
2380.
(12) For a recent review, see: (a) Maeda, H.; Mizuno, K. J. Synth. Org. Chem.
Jpn. 2004, 62, 1014–1025. (b) Maeda, H.; Hirai, T.; Sugimoto, A.; Mizuno, K.
J. Org. Chem. 2003, 68, 7700–7706. (c) Li, W.; Shi, M. J. Org. Chem. 2008,
73, 4151–4154, and references cited therein.
(13) Mizuno, K.; Sugita, H.; Hirai, T.; Maeda, H.; Otsuji, Y.; Yasuda, M.;
Hashiguchi, M.; Shima, K Tetrahedron Lett. 2001, 42, 3363–3366, and references
cited therein.
Tf2NH as the catalyst afforded 3a in 97% yield within 1 h and
95% yield within 10 min, respectively (Table 1, entry 5). The
examination of solvent effects revealed that the reaction was
much more sluggish in toluene, producing 3a in 68% yield
within 4 h (Table 1, entry 6). When the reaction was carried
out in polar solvents, such as acetonitrile, tetrahydrofuran (THF),
and ether, either no reaction occurred or 3a was obtained in
low yield (Table 1, entries 7-9). With use of 2.0, 1.2, and 1.0
equiv of MVK in CH2Cl2 at room temperature (25 °C), the
(14) Some recent examples for the construction of carbocycles catalyzed by
Tf2NH: (a) Shindoh, N.; Tokuyama, H.; Takasu, K. Tetrahedron Lett. 2007, 48,
4749–4753. (b) Takasu, K.; Miyakawa, Y.; Ihara, M.; Tokuyama, H. Chem.
Pharm. Bull. 2008, 56, 1205–1206. (c) Takasu, K.; Shindoh, N.; Tokuyama, H.;
Ihara, M. Tetrahedron 2006, 62, 11900–11907.
(15) (a) Cossy, J.; Lutz, F.; Alauze, V.; Meyer, C. Synlett 2002, 45–48. (b)
Boxer, M. B.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 48–49.
(16) Othman, R. B.; Bousquet, T.; Othman, M.; Dalla, V. Org. Lett. 2005,
7, 5335–5337.
(17) (a) Nakashima, D.; Yamamoto, H. Org. Lett. 2005, 7, 1251–1253. (b)
Jung, M. E.; Ho, D. G. Org. Lett. 2007, 9, 375–378.
(18) (a) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004, 126, 10204–
10205. (b) Sun, J.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 13512–13513.
(c) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc. 2005, 127, 3668–
3669. (d) Takasu, K.; Ishii, T.; Inanaga, K.; Ihara, M. Org. Synth. 2006, 83,
193–199. (e) Takasu, K.; Hosokawa, N.; Inanaga, K.; Ihara, M. Tetrahedron
Lett. 2006, 47, 6053–6056.
J. Org. Chem. Vol. 74, No. 2, 2009 857