identical Voc conditions, demonstrating that the electron re-
combination process was effectively controlled by the molecular
structure of the dye. The results of the electron lifetime are also
consistent with those of Voc shown in Table 1.
In summary, we have developed novel organic dyes incor-
porating long alkyl chains that achieve over 7.31% power
conversion efficiency and long-term stability using a polymer
gel electrolyte; such a high efficiency is very impressive. We
believe that the development of highly efficient organic dyes
as alternatives to ruthenium complexes is possible through
sophisticated structural modifications.
This work was supported by the Korea Science and
Engineering Foundation (KOSEF) through the NRL pro-
gram, funded by Ministry of Science and Technology (no.
R0A-2005-000-1034-0), the MKE (The Ministry of Knowl-
edge Economy), Korea, under the ITRC (Information
Technology Research Center) Program (IITA-2008-C1090-
0804-0013) and BK-21 (2006).
Notes and references
1 (a) B. O’Regan and M. Gratzel, Nature, 1991, 353, 737; (b) M.
¨
Gratzel, Nature, 2001, 414, 338; (c) P. Wang, C. Klein, R.
¨
Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, J. Am.
Fig. 5 The electron diffusion coefficients (a) and lifetimes (b) of the
electrodes containing different adsorbed dyes (i.e. JK-2, JK-70 and
JK-71).
¨
Chem. Soc., 2005, 127, 808; (d) S.-R. Jang, C. Lee, J. Ko, J. Lee,
R. Vittal and K.-J. Kim, Chem. Mater., 2006, 18, 5604.
2 (a) M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E.
¨
¨
Muller, P. Liska, N. Vlachopoulos and M. Gratzel, J. Am. Chem.
4.99% under the same conditions. Tolerance of such a severe
light-soaking stress by a DSSC with an efficiency of over 6.2%
is unprecedented. Only two ruthenium polypyridyl sensitizers
have resisted light-soaking stress for 1000 h while retaining an
efficiency of over 6%.6 This is the first time that organic dye-
sensitized cells with an efficiency above 6.2% using a quasi-
solid-state electrolyte have passed such a light-soaking test.
The enhanced long-term stability of JK-70 and JK-71 can
be attributed to the introduction of long alkyl chains to the
bis-dimethylfluorenyl amino unit, which leads to the
retardation of charge recombination.
Soc., 1993, 115, 6382; (b) M. Gratzel, J. Photochem. Photobiol., A,
¨
2004, 164, 3; (c) Y. Chiba, A. Islam, Y. Watanabe, R. Komiya,
N. Koide and L. Han, Jpn. J. Appl. Phys., Part 2, 2006,
45, L638.
3 L. Schmidt-Mende, J. E. Kroeze, J. R. Durrant, M. K. Nazeeruddin
and M. Gratzel, Nano Lett., 2005, 5, 1315.
¨
4 (a) S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F.
De Angelis, D. Di Censo, M. K. Nazeeruddin and M. Gratzel,
¨
J. Am. Chem. Soc., 2006, 128, 16701; (b) Z. S. Wang, Y. Cui, K.
Hara, Y. Dan-oh, C. Kasada and A. Shinpo, Adv. Mater., 2007,
19, 1138; (c) T. Horiuchi, H. Miura, K. Sumioka and S. Uchida,
J. Am. Chem. Soc., 2004, 126, 12218; (d) N. Koumura, Z.-S. Wang,
S. Mori, M. Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc.,
2006, 128, 14256.
Fig. 5 shows the electron diffusion coefficient (De) and life-
time (te) of the DSSCs when employing different dyes (i.e. JK-2,
JK-70 and JK-71) as a function of Jsc and Voc, respectively. The
De and te values were determined by the photocurrent and
photovoltage transients, induced by a stepwise change in the
laser light intensity, controlled with a function generator.7–9 The
De value was obtained by a time constant (tc), determined by
fitting a decay of the photocurrent transient with exp(Àt/tc)
and the TiO2 film thickness (o) using the equation
De = o2/(2.77 Â tc).7 The te value was also determined by
fitting a decay of the photovoltage transient with exp(Àt/te).7
The De values of the photoanodes containing the adsorbed
organic dyes are shown to be very similar to each other under
identical Jsc conditions, showing similar trends to those of
coumarin dyes.10 Meanwhile, the difference in the te values
was clearly observed among cells employing different dyes. The
increasing order of te values was JK-2 o JK-70 o JK-71 under
5 (a) K.-J. Jiang, N. Masaki, J.-B. Xia, S. Noda and S. Yanagida,
Chem. Commun., 2006, 2460; (b) F. Gao, Y. Wang, J. Zhang, D.
Shi, M. Wang, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin
and M. Gratzel, Chem. Commun., 2008, 2635; (c) C.-Y. Chen, S.-J.
¨
Wu, C.-G. Wu, J.-G. Chen and K.-C. Ho, Angew. Chem., Int. Ed.,
2006, 45, 5822; (d) N. Koumura, Z.-S. Wang, S. Mori, M.
Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc., 2006,
128, 14256; (e) H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang,
M. K. Nazeeruddin and M. Gratzel, Angew. Chem., Int. Ed., 2008,
¨
47, 327.
6 (a) P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,
T. Sekiguchi and M. Gratzel, Nat. Mater., 2003, 2, 402; (b) E.
¨
Stathator and P. Lianos, Adv. Mater., 2007, 19, 3338.
7 S. Nakade, T. Kanzaki, Y. Wada and S. Yanagida, Langmuir,
2005, 21, 10803.
8 K.-S. Ahn, M.-S. Kang, J.-K. Lee, B.-C. Shin and J.-W. Lee, Appl.
Phys. Lett., 2006, 89, 013103.
9 K.-S. Ahn, M.-S. Kang, J.-W. Lee and Y. S. Kang, J. Appl. Phys.,
2007, 101, 084312.
10 K. Hara, K. Miyamoto, Y. Abe and M. Yanagida, J. Phys. Chem.
B, 2005, 109, 23776.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 4951–4953 | 4953