7418
I. A. O’Neil et al. / Tetrahedron Letters 49 (2008) 7416–7418
OMe
1. t-BuLi, THF, -78 oC
OMe
O
2. RNCO
3. H2O
N
O
R = tBu, 58% 10a/b
Ph, 53% 11a/b
N
O
1
N
H
R
Scheme 5.
C-2 position. This carbanion was trapped out initially with benzo-
phenone to give the products 7a/b as a 1:1 mixture of diastereoiso-
mers in 95% yield. We did not observe any deprotonation at the
other N–CH2 positions.
References and notes
1. (a) Turner, R. B.; Woodward, R. B. The Chemistry of the Cinchona Alkaloids. In
The Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1953, Vol. 3,
Chapter 16; (b) Uskokovic, M. R.; Grethe, G. The Cinchona Alkaloids. In The
Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1973, Vol. 14; (c)
Kaufmann, T. S.; Rúveda, E. A. Angew. Chem., Int. Ed. 2005, 44, 854.
2. Kacprzak, K.; Gawronski, J. Synthesis 2001, 961.
3. Sakamuri, S.; Enyedy, I. J.; Kozikowski, A. P.; Wang, S. M. Tetrahedron Lett. 2000,
41, 9949.
4. Yoon, P. T.; Jacobsen, E. N. Science 2003, 299, 1691.
5. Stork, G.; Niu, D.; Fujimoto, A.; Koft, E. R.; Balkovec, J. M.; Tata, J. R.; Dake, G. R. J.
Am. Chem. Soc. 2001, 123, 3239; See also: Raheem, I. T.; Goodman, S. N.;
Jacobsen, E. N. J. Am. Chem. Soc 2003, 126, 706; Lygo, B.; Crosby, J.; Lowde, T. R.;
Wainwright, P. G. Tetrahedron Lett. 1997, 38, 2343.
6. For selected examples see: Clemo, G. R.; Hoggarth, E. J. Chem. Soc. 1939, 1241;
Bender, D. R.; Coffen, D. L. J. Org. Chem. 1968, 33, 2504. Warawa, E. J.; Campbell,
J. R. J. Org. Chem. 1974, 39, 3511. Warawa, E. J.; Mueller, N. J.; Jules, R. J. Med.
Chem. 1974, 17, 497. Warawa, E. J.; Mueller, N. J.; Jules, R. J. Med. Chem. 1975, 18,
587. Stotter, P. L.; Friedman, M. D. J. Org. Chem. 1985, 50, 29. Jankowski, R.;
Joseph, D.; Cave, C.; Dumas, F.; Ourevitch, M.; Mahuteau, J.; Morgant, G.;
Pavlovic, N. B.; d’Angelo, J. Tetrahedron Lett. 2003, 44, 4187. Hansen, A. R.;
Badar, H. J. Heterocycl. Chem. 1966, 3, 109; Madhav, R. Synthesis 1982, 27.
7. Barton, D. H. R.; Beulgelmans, R.; Young, R. N. Nouv. J. Chem. 1978, 2, 363.
8. O’Neil, I. A.; Lai, J. Y. Q.; Wynn, D. Tetrahedron Lett. 2000, 41, 271.
9. O’Neil, I. A.; Bhamra, I.; Gibbons, P. D. J. Chem. Soc., Chem. Commun. 2006, 4545.
10. For a general review of organolithium chemistry see: Clayden, J. Organo-
lithiums: Selectivity for Synthesis. In Tetrahedron Organic Chemistry Series;
Pergamon, 2003; Vol. 23.
The product diastereoisomers 7a/b were separable by flash
chromatography, and the less polar isomer 7a was subjected to
catalytic hydrogenation using Pd/C in MeOH to give the parent ter-
tiary amine 8a, which was crystalline (Scheme 4). X-ray analysis
confirmed the structure of the product as the anti-diastereoisomer.
The carbanion 2 was also trapped out with a number of other
electrophiles. The adduct with fluoren-9-one was obtained in
84% yield, again as a 1:1 mixture of diastereoisomers 9a/b. Quench-
ing the carbanion with non-enolisable aromatic aldehydes, such as
benzaldehyde, gave the corresponding adducts as complex mix-
tures of diastereoisomers, which were inseparable by chromatog-
raphy. With tert-butyl and phenylisocyanate, the corresponding
amides 10a/b and 11a/b were generated in 58% and 53% yields,
respectively, after aqueous work-up, as 1:1 mixtures of diastereo-
isomers (Scheme 5).
In summary, we have shown that functionalised 2,3-quinucli-
dines can be prepared by the directed lithiation of 3-methoxy-
methyl quinuclidine N-oxide in good to excellent yields. To the
best of our knowledge, this is the first report of a directed lithiation
a
to a tertiary amine N-oxide.