ps-TRIR spectroscopy. Given the appreciable Fe character
in these high lying orbitals, the photoproduct can be described
+
ꢀ
as
a
{CpFeꢄ }(CRCCRN)Re(bpyꢄ
)
CS state. This
description is consistent with the spectroscopic properties of
the complex upon one-electron electrochemical oxidation and
reduction. The cyanoacetylide ligand offers a p-orbital struc-
ture similar to that of both cyanide and buta-1,3-diyndiyl, and
is therefore appropriate for use as a p-donating bridging
ligand. With the development of convenient synthetic routes
to complexes featuring this fragment, there is considerable
scope for the development of the ‘‘cyanide-like’’ cyanoacety-
lide ligand as a bridging ligand in inorganic systems. The
fascinating potential of cyanoacetylide ligand to act as a
mediating unit for magnetic effects is high on a long list of
future studies.
We gratefully acknowledge the EPSRC, LSF and Royal
Society for financial support of this work.
Fig.
4
A plot (50% ellipsoids) of the cation [{Cp(dppe)Fe}-
(CRCCRN){Re(CO)3(bpy)}]+ from [3]BF4. Hydrogen atoms are
omitted for clarity. Selected bond lengths (A) and angles (1): Fe(1)–P(1)
2.1803(8); Fe(1)–P(2) 2.2033(7); Fe(1)–C(1) 1.828(3); C(1)–C(2) 1.235(4);
C(2)–C(3) 1.348(4); C(3)–N(1) 1.161(3); N(1)–Re(1) 2.120(2); Re(1)–N(2)
2.180(2); Re(1)–N(3) 2.172(2); P(1)–Fe(1)–P(2) 87.59(3); Fe(1)–C(1)–C(2)
Notes and references
z Crystal data for [3]BF4: C47H37FeN3O3P2Re BF4, M = 1082.60,
monoclinic, space group P21/c(no.14), a = 10.9091(2), b = 32.1612(6),
c = 12.9704(2) A, b = 106.00(1)1, U = 4374.38(22) A3, F(000) = 2144,
Z = 4, Dc = 1.644 mg mꢀ3, m = 3.232 mmꢀ1 (Mo-Ka, l = 0.71073 A),
T = 120.0(1) K. 58630 reflections were collected yielding 12 770 unique
data (Rmerg = 0.0249). Final wR2(F2) = 0.0.723 for all data (507 refined
parameters), conventional R1(F) = 0.0303 for 11686 reflections with
I Z 2s, GOF = 1.033. Crystallographic data for the structure have
been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication CCDC number 693768.w
177.9(2);
C(1)–C(2)–C(3)
170.1(3);
C(2)–C(3)–N(1)
179.6(3);
C(3)–N(1)–Re(1) 169.2(2).
contributions from the CRCCRN (27%) and Re (15%)
fragments. The HOMO-1, which is approximately orthogonal
to the HOMO, is similarly comprised. The bpy p* system
makes up the LUMO, and is well separated from the other
frontier orbitals.
TD-DFT calculations support the interpretation of the photo-
chemical results. In [3-H]+, a band with significant (HOMO-1)
- LUMO (Fe-to-bpy p*) character and reasonable intensity
(f = 0.0492) is calculated at 461 nm (21 700 cmꢀ1). A predomi-
nantly Re-to-bpy MLCT is calculated at shorter wavelengths
409 nm (24 400 cmꢀ1, f = 0.0016). At shorter wavelengths, a
series of transitions associated with the Fe(dHpe)Cp fragment
can be identified.
1 P. J. Low, Dalton Trans., 2005, 2821.
2 M. A. Watzky, J. F. Endicott, X. Song, Y. Lei and A. Macatangay,
Inorg. Chem., 1996, 35, 3463; A. V. Macatangay, S. E. Mazzetto
and J. F. Endicott, Inorg. Chem., 1999, 38, 5091; A. V. Macatangay
and J. F. Endicott, Inorg. Chem., 2000, 39, 437.
3 K. R. Dunbar and R. A. Heintz, Prog. Inorg. Chem., 1997, 45, 283;
M. Shatruk, A. Dragulescu-Andrasi, K. E. Chambers, S. A. Stoian,
E. L. Bominaar, C. Achim and K. R. Dunbar, J. Am. Chem. Soc.,
2007, 129, 6104; E. J. Schelter, F. Karadas, C. Avendano, A. V.
Rosvirin, W. Wernsdorfer and K. R. Dunbar, J. Am. Chem. Soc.,
2007, 129, 8139; L. M. C. Beltran and J. R. Long, Acc. Chem. Res.,
2005, 38, 325; J. Lefebvre, F. Callaghan, M. J. Katz, J. E. Sonier and
D. B. Leznoff, Chem.–Eur. J., 2006, 12, 6748; M. Atanasov,
P. Comba and C. A. Daul, J. Phys. Chem. A, 2006, 110, 13332.
4 M. V. Bennett and J. R. Long, J. Am. Chem. Soc., 2003, 125, 2394;
L. G. Beauvais and J. R. Long, J. Am. Chem. Soc., 2002, 124, 2110.
5 Y. Zhou, A. M. Arif and J. S. Miller, Chem. Commun., 1996, 1881;
N. J. Brown, P. K. Eckert, M. A. Fox, D. S. Yufit, J. A. K.
Howard and P. J. Low, Dalton Trans., 2008, 433; M. E. Smith, R.
In conclusion, mixing of Fe, CRCCRN and Re character
in the high lying occupied orbitals allows a new low energy
dpd-p*(bpy) transition, which has been characterized by
L. Cordiner, D. Albesa-Jove
Howard and P. J. Low, Can. J. Chem., 2006, 84, 154; R. L.
Cordiner, M. E. Smith, A. S. Batsanov, D. Albesa-Jove, F. Hartl,
´
, D. S. Yufit, F. Hartl, J. A. K.
´
J. A. K. Howard and P. J. Low, Inorg. Chim. Acta, 2006, 359, 946;
R. L. Cordiner, D. Corcoran, D. S. Yufit, A. E. Goeta, J. A. K.
Howard and P. J. Low, Dalton Trans., 2003, 3541.
6 M. I. Bruce and P. J. Low, Adv. Organomet. Chem., 2004, 50, 179.
7 J. Maurer, B. Sarkar, B. Schwederski, W. Kaim, R. F. Winter and
´
S. Zalis, Organometallics, 2006, 25, 3701.
8 D. J. Stufkens and A. Vlcek, Coord. Chem. Rev., 1998, 177, 127.
9 J. M. Butler, M. W. George, J. R. Schoonover, D. M. Dattelbaum
and T. J. Meyer, Coord. Chem. Rev., 2007, 251, 492.
10 K. Kalyanasundaram, J. Chem. Soc., Faraday Trans. 2, 1986,
82, 2401; Y. F. Lee, J. R. Kirchhof, R. M. Berger and D.
Gosztola, J. Chem. Soc., Dalton Trans., 1995, 3677; F. Hartl, R.
P. Groenestein and T. Mahabiersing, Collect. Czech. Chem.
Commun., 2001, 66, 51.
Fig. 5 The (a) HOMO (b) HOMO-1 (c) LUMO of [3-H]+
.
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5845–5847 | 5847