1224
W.-G. Jia et al. / Inorganic Chemistry Communications 10 (2007) 1222–1225
(c) J. McCleverty, N.M. Atherton, J. Locke, E.J. Wharton, C.J.
Winscom, J. Am. Chem. Soc. 89 (1967) 6082.
[2] N. Robertson, X. Liu, L.J. Yellowlees, Inorg. Chem. Commun. 3
(2000) 424.
[3] (a) M. Fourmigue, Acc. Chem. Res. 37 (2004) 179;
(b) J. Nishijo, E. Ogura, J. Yamaura, A. Miyazaki, T. Enoki, T.
Takano, Y. Kuwatani, M. Iyoda, Solid State Commun. 116 (2000) 661;
(c) A.E. Pullen, C. Faulmann, K.I. Pokhodnya, P. Cassoux, M.
Tokumoto, Inorg. Chem. 37 (1998) 6714;
(d) N. Robertson, C. Bergemann, H. Becher, P. Agarwal, S.R. Julian,
R.H. Friend, N.J. Hatton, A.E. Underhill, A. Kobayashi, J. Mater.
Chem. 9 (1999) 1713;
(e) N. Hideyasu, K. Mao, A. Minoru, K. Tadashi, M. Takehiko, Inorg.
Chem. 43 (2004) 6075;
(f) T. Akutagawa, T. Nakamura, Coord. Chem. Rev. 226 (2002) 3.
[4] (a) T. Waters, H.K. Woo, X.B. Wang, L.S. Wang, J. Am. Chem. Soc.
128 (2006) 4282;
(b) Z.P. Ni, X.M. Ren, J. Ma, J.L. Xie, C.L. Ni, Z.D. Chen, Q.J.
Meng, J. Am. Chem. Soc. 127 (2005) 14330;
Fig. 3. Molecular structure of the p-CymeneRu(mnt)PPh3 (4); All
˚
hydrogen atoms are omitted for clarity. Selected distances (A) and angels
(c) H. Nakajima, M. Katsuhara, M. Ashizawa, T. Kawamoto, T.
Mori, Inorg. Chem. 43 (2004) 6075.
(°): Ru(1)–S(1) 2.3566(16), Ru(1)–S(2) 2.3496(16), Ru(1)–P(1) 2.3211(14),
C(1)–C(2) 1.360(7); S(1)–Ru(1)–S(2) 87.49(5).
[5] (a) R. Ziessel, M.T. Youinou, F. Balegroune, D. Grandjean, J.
Organomet. Chem. 441 (1992) 143;
(b) K. Yang, M.J. Don, D.K. Sharma, S.G. Bott, M.G. Richmond, J.
Organomet. Chem. 495 (1995) 61;
(c) M.J.H. Russell, C. White, A. Yates, P.M. Maitlis, J. Chem. Soc,
Dalton Trans. 7 (1978) 849.
slightly shorter than the corresponding complex (p-Cymene)
Ru[S2C2(B10H10)](PMe3) (av. 2.392(1) A) [17].
˚
In summary, half-sandwich Ir and Ru complexes with
Mnt ligands have been synthesized and characterized.
The 16-electron complexes Cp*Ir(mnt) (1) and [(p-Cyme-
ne)Ru(mnt)] (2) react with PPh3 to form the corresponding
18-electron complexes Cp*Ir(Mnt)PPh3 (3) and [(p-Cyme-
ne)Ru(Mnt)PPh3] (4). The preparation of another 18-elec-
tron Mnt complexes of Ir and Ru with the Lewis base
containing N of poly-pyridine or C of N-heterocyclic car-
bene ligands are now in progress.
[6] (a) G.X. Jin, Coord. Chem. Rev. 248 (2004) 587;
(b) G.X. Jin, in: C.G. Screttas, B.R. Steele (Eds.), Perspectives in
Organometallic Chemistry, RSC Cambridge Press, Cambridge, UK,
2003, p. 47.
[7] (a) X. Wang, S. Liu, L.H. Weng, G.X. Jin, Chem. Euro. J. 13 (2007)
188;
(b) S. Liu, G.X. Jin, Dalton Trans. (2007) 949;
(c) S. Liu, J.S. Zhang, X. Wang, G.X. Jin, Dalton Trans. (2006) 5225;
(d) J.Q. Wang, C.X. Ren, G.X. Jin, Chem. Commun. 37 (2005) 4738;
(e) J.Q. Wang, C.X. Ren, L.H. Weng, G.X. Jin, Chem. Commun. 2
(2006) 162;
(f) G.X. Jin, J.Q. Wang, C. Zhang, L.H. Weng, M. Herberhold,
Angew. Chem. Int. Ed. 44 (2005) 259;
Acknowledgements
Financial support by the National Science Foundation
of China for Distinguished Young Scholars (20531020,
20421303), by the National Basic Research Program of
China (2005CB623800) and by Shanghai Science and Tech-
nology Committee (05JC14003, 06XD14002) is gratefully
acknowledged.
(g) M. Herberhold, G.X. Jin, H. Yan, W. Milius, B. Wrackmeyer,
Eur. J. Inorg. Chem. (1999) 873;
(h) S.Y. Cai, J.Q. Wang, G.X. Jin, Organometallics 24 (2005) 4226;
(i) G.X. Jin, J.Q. Wang, Dalton Trans. (2006) 86;
(j) S.Y. Cai, Y.J. Lin, G.X. Jin, Dalton Trans. (2006) 912;
(k) J.Q. Wang, G.X. Jin, Inorg. Chem. Commun. 10 (2007) 463.
[8] C. White, A. Yates, P.M. Maitlis, Inorg. Synth. 29 (1992) 228.
[9] M.A. Bennett, T.N. Huang, T.W. Matheson, A.K. Smith, Inorg.
Synth. 21 (1982) 74.
[10] A. Davison, R.H. Holm, Inorg. Synth. 10 (1982) 8.
[11] Synthesis of 1: [Cp*IrCl2]2(398 mg, 0.5 mmol) was added to a solution
of Na2Mnt (186 mg, 1 mmol) in degassed ethanol (50 mL) in a
Schlenk tube and kept at room temperature to stir for 16 h. The color
of the solution changed slowly from orange-yellow to red. After
removal of the solvent, the residue was redissolved in 3 mL of
dichloromethane and chromatographed on silica gel. Elution with
Appendix A. Supplementary material
CCDC 649877 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
html, or from the Cambridge Crystallographic Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK, fax:
(+44) 1223-336-033, or e-mail: deposit@ccdc.cam.ac.uk.
Supplementary data associated with this article can be
dichloromethane gave
a red zone. Evaporation under reduced
pressure and crystallization from CH2Cl2/hexane afford 1(384 mg
82%). Anal. Calcd. for C14H15IrN2S2(%): C 35.96, H 3.23, N 5.99.
Found: C 35.62, H 3.46, N 5.88, 1H NMR (500 M CDCl3, ppm):
d = 2.19 (s, g5-C5H5, 10H). IR (KBr disk): m = 2205 cmÀ1 (–CN).
Synthesis of 2: [(p-Cymene)RuCl2]2(306 mg, 0.5 mmol) was added to a
solution of Na2Mnt (186 mg, 1 mmol) in degassed ethanol (50 mL) in
a Schlenk tube and kept at room temperature to stir for 16 h. The
color of the solution changed slowly from red to dark-red. After
removal of the solvent, the residue was redissolved in 3 mL of
dichloromethane and chromatographed on silica gel. Elution with
dichloromethane gave a dark-red zone. Evaporation under reduced
References
[1] (a) R.M. Olk, B. Olk, W. Dietzsch, R. Kirmse, E. Hoyer, Coord.
Chem. Rev. 117 (1992) 99;
(b) N. Robertson, L. Cronin, Coord. Chem. Rev. 227 (2002) 93;