A. Akwabi-Ameyaw et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4733–4739
4739
Table 3
ner very similar to GW 4064 1. None of the compounds in series 3
were more potent than GW 4064 1.
Pharmacokinetics of FXR agonists in rats
a
b
d
#
t1/2 min
Clc (mL/min/kg)
VSS (mL/kg)
Fe (%)
2a
3a
3g
15
45
31
66
6.7
4.4
720
70
85
8.5
12
26
Supplementary data
Supplementary data associated with this article can be found, in
a
Rats were dosed at 1 mg/kg (iv) and 5 mg/kg (po).
t1/2 is the iv terminal half-life dosed as a solution. All in vivo pharmacokinetic
b
values are the mean of two experiments.
c
Cl is the iv total clearance.
VSS is the iv steady state volume of distribution.
F is the oral bioavailability.
References and notes
d
e
1. Forman, B. M.; Goode, E.; Chen, J.; Oro, A. E.; Bradley, D. J.; Perlmann, T.;
Noonan, D. J.; Burka, L. T.; McMorris, T.; Lamph, W. W.; Evans, R. M.;
Weinberger, C. Cell 1995, 81, 687.
difference in the binding modes of these two compounds is the
spatial relationship between the benzoic acid ring and the adjoin-
ing benzothiophene ring of 2c and indole ring of 3a. In the case of
benzothiophene analog 2c, these rings are co-planar, while in the
crystal structure of indole 3a, not only are the benzoic acid and in-
dole rings out of plane, but the indole ring is also forced deeper into
the pocket. The greater potency of benzothiophene 2c relative to
indole 3a indicates that a co-planar ligand may more effectively
stabilize the active protein conformer, wherein co-repressors are
shed and co-activators are recruited, thereby promoting gene tran-
scription. Alternatively, although indole 3a is non-planar, the li-
gand causes little perturbation of the FXR ligand binding pocket,
yet its active site conformation, to achieve optimal interactions be-
tween its carboxylic acid and 331Arg and 294His of the FXR ligand
binding pocket, is of higher energy than its bulk solution conforma-
tion. This free energy cost could account for its lower potency rel-
ative to 2c, as well as the reduced activity of all series 3 analogs.
Several compounds from series 2 and 3 were evaluated in phar-
macokinetic studies in rats. As shown in Table 3, benzothiophene
2a had a very high clearance (Cl = 66 mL/min/kg), which was sim-
ilar to the hepatic blood flow in the rat. The high clearance of this
compound, in conjunction with a low volume of distribution
(VSS = 720 mL/kg), resulted in a very short half-life (t1/2 = 15 min).
The benzothiophene 2a was also poorly bioavailable (F = 8.5%). In-
dole 3a had a significantly lower clearance (Cl = 6.7 mL/min/kg)
than the benzothiophene 2a, however, the resulting improvement
in terminal half-life (t1/2 = 45 min) was modest due to a very low
volume of distribution (VSS = 70 mL/kg). The oral bioavailability
(F = 12%) of the indole 3a was low and only slightly better than that
of the benzothiophene. The poor bioavailability of 2a and 3a may
have been due, in part, to their poor aqueous solubility. In an at-
tempt to improve solubility, a second nitrogen atom was incorpo-
rated into the indole ring of 3a to give the benzimidazole 3g. This
change resulted in a twofold improvement in bioavailability
(F = 26%) with little alteration of clearance or terminal half-life.
Although the terminal half-lives of these analogs did not improve
relative to GW 4064 1, the increased oral bioavailability of 3g sug-
gests that absorption of GW 4064 analogs may be dissolution lim-
ited and could be increased by solubility enhancing formulations.
In summary, two series of conformationally constrained analogs
of GW 4064 1 were prepared. Benzothiophene analogs 2a and 2c
and naphthalene 2g were potent, full FXR agonists from the more
highly constrained series 2. An X-ray co-crystal structure of benzo-
thiophene 2c indicates that it binds to the FXR receptor in a man-
2. Higashiyama, H.; Kinoshita, M.; Asano, S. Acta Histochem. 2008, 110, 86.
3. Rizzo, G.; Renga, B.; Mencarelli, A.; Pellicciari, R.; Fiorucci, S. Curr. Drug Targets:
Immune, Endocrinol. Metab. Disord. 2005, 5, 289.
4. Sinal, C. J.; Tohkin, M.; Miyata, M.; Ward, J. M.; Lambert, G.; Gonzalez, F. J. Cell
2000, 102, 731.
5. Cariou, B.; van Harmelen, K.; Duran-Sandoval, D.; van Dijk, T.; Grefhorst, A.;
Bouchaert, E.; Fruchart, J.-C.; Gonzalez, F. J.; Kuipers, F.; Staels, B. FEBS Lett.
2005, 579, 4076.
6. Ma, K.; Saha, P. K.; Chan, L.; Moore, D. D. J. Clin. Invest. 2006, 116, 1102.
7. Zhang, Y.; Lee, F. Y.; Barrera, G.; Lee, H.; Vales, C.; Gonzalez, F. J.; Willson, T. M.;
Edwards, P. A. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1006.
8. Lambert, G.; Amar, M. J. A.; Guo, G.; Brewer, H. B., Jr.; Gonzalez, F. J.; Sinal, C. J. J.
Biol. Chem. 2003, 278, 2563.
9. Maloney, P. R.; Parks, D. J.; Haffner, C. D.; Fivush, A. M.; Chandra, G.; Plunket, K.
D.; Creech, K. L.; Moore, L. B.; Wilson, J. G.; Lewis, M. C.; Jones, S. A.; Willson, T.
M. J. Med. Chem. 2000, 43, 2971.
10. Watanabe, M.; Houten, S. M.; Wang, L.; Moschetta, A.; Mangelsdorf, D. J.;
Heyman, R. A.; Moore, D. D.; Auwerx, J. J. Clin. Invest. 2004, 113, 1408.
11. Inagaki, T.; Choi, M.; Moschetta, A.; Peng, L.; Cummins, C. L.; McDonald, J. G.;
Luo, G.; Jones, S. A.; Goodwin, B.; Richardson, J. A.; Gerard, R. D.; Repa, J. J.;
Mangelsdorf, D. J.; Kliewer, S. A. Cell Metab. 2005, 2, 217.
12. Inagaki, T.; Moschetta, A.; Lee, Y.-K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R. T.;
Shelton, J. M.; Richardson, J. A.; Repa, J. J.; Mangelsdorf, D. J.; Kliewer, S. A. Proc.
Natl. Acad. Sci. U.S.A. 2006, 103, 3920.
13. Jung, D.; Inagaki, T.; Gerard, R. D.; Dawson, P. A.; Kliewer, S. A.; Mangelsdorf, D.
J.; Moschetta, A. J. Lipid Res. 2007, 48, 2693.
14. Fiorucci, S.; Clerici, C.; Antonelli, E.; Orlandi, S.; Goodwin, B.; Sadeghpour, B. M.;
Sabatino, G.; Russo, G.; Castellani, D.; Willson, T. M.; Pruzanski, M.; Pellicciari,
R.; Morelli, A. J. Pharmacol. Exp. Ther. 2005, 313, 604.
15. Liu, Y.; Binz, J.; Numerick, M. J.; Dennis, S.; Luo, G.; Desai, B.; MacKenzie, K. I.;
Mansfield, T. A.; Kliewer, S. A.; Goodwin, B.; Jones, S. A. J. Clin. Invest. 2003, 112,
1678.
16. Stedman, C.; Liddle, C.; Coulter, S.; Sonoda, J.; Alvarez, J. G.; Evans, R. M.;
Downes, M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11323.
17. Fiorucci, S.; Antonelli, E.; Rizzo, G.; Renga, B.; Mencarelli, A.; Riccardi, L.;
Orlandi, S.; Pellicciari, R.; Morelli, A. Gastroenterology 2004, 127, 1497.
18. Fiorucci, S.; Rizzo, G.; Antonelli, E.; Renga, B.; Mencarelli, A.; Riccardi, L.;
Morelli, A.; Pruzanski, M.; Pellicciari, R. J. Pharmacol. Exp. Ther. 2005, 315, 58.
19. Fiorucci, S.; Rizzo, G.; Antonelli, E.; Renga, B.; Mencarelli, A.; Riccardi, L.;
Orlandi, S.; Pruzanski, M.; Morelli, A.; Pellicciari, R. J. Pharmacol. Exp. Ther. 2005,
314, 584.
20. Hanniman, E. A.; Lambert, G.; McCarthy, T. C.; Sinal, C. J. J. Lipid Res. 2005, 46,
2595.
21. Zhang, Y.; Wang, X.; Vales, C.; Lee, F. Y.; Lee, H.; Lusis, A. J.; Edwards, P. A.
Arterioscler., Thromb., Vasc. Biol. 2006, 26, 2316.
22. Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech,
K. L.; Deaton, D. N.; Jones, S. A.; Kaldor, I.; Liu, Y.; Madauss, K. P.; Marr, H. B.;
McFadyen, R. B.; Miller, A. B.; Navas, F., III; Parks, D. J.; Spearing, P. K.; Todd, D.;
Williams, S. P.; Wisely, G. B. Bioorg. Med. Chem. Lett. 2008, 18, 4339.
23. Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.;
Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Parks, D. J.; Todd, D.;
Williams, S. P.; Wisely, G. B. Bioorg. Med. Chem. Lett. 2009, 19, 2969.
24. Kuo, C. H.; Hook, J. B.; Bernstein, J. Toxicology 1981, 22, 149.
25. Sugihara, K.; Kitamura, S.; Sanoh, S.; Ohta, S.; Fujimoto, N.; Maruyama, S.; Ito,
A. Toxicol. Appl. Pharmacol. 2000, 167, 46.
26. Akwabi-Ameyaw, A. A.; Deaton, D. N.; McFadyen, R. B.; Navas, F., III. PCT Int.
Appl. WO 005998, 2009; Chem. Abstr. 2009, 150, 121632.