10.1002/chem.201904359
Chemistry - A European Journal
COMMUNICATION
pillar activating role played by the acyl chloride that was found in
forming the highly electrophilic mixed anhydride of the carbamic
acid I2, responsible for the final dearomatization event.
Keywords: CO2 • Carbonylation • Metal-free • Pyridine •
Dearomatization reaction
In this process, transition states (TS3 and TS4, see SI) are
characterized by a SN2-like concerted mechanism, where no
tetrahedral intermediate is located.[22] Here the role of TBD as a
Brønsted acid is again pivotal in making the benzoate unit a much
better leaving group, allowing the nucleophilic attack by the pyridyl
nitrogen and leading to the formation of the zwitterionic product
P2. The final deprotonation step of P2a to the neutral intermediate
3a’ was modelled using both TEA and TDB as the base (see SI
for details) leading to very favourable exergonic reaction paths.
Furthermore, the three-component adduct 3 could be easily
obtained via Friedel-Crafts type acylation.[23]
Finally, the synthetic manipulation described in Scheme 3 clearly
underlined the chemical modulability of the final compounds 3. In
particular, the trichloro derivative 3aj was effectively subjected to
methanolysis in the presence of NaH/MeOH to give the
corresponding methyl ester 4aj in 98% yield (Scheme 3a).
Additionally, the partially dearomatized pyridine ring provides an
expedient platform that can be conveniently (88% yield) and
selectively reduced to a piperidinyl core (i.e. 5ai) by means of mild
reducing conditions (Pd(OH)2/H2/MeOH, Scheme 3b).
[1]
a) L. Kollar, in Modern Carbonylation Methods, Wiley-VCH, 2008; b) M.
Beller, X.-F. Wu, Transition Metal Catalyzed Carbonylation Reactions
Carbonylative Activation of C-X Bonds, Springer, 2013; c) S. Zhao, N.P.
Mankad, Catal. Sci. Technol. 2019, 9, 3603-3613.
[2]
[3]
a) K. Dong, X.-F. Wu, Angew. Chem. Int. Ed. 2017, 56, 5399-5401; b) L.
Wang, W. Sun, C. Liu, Chin. J. Chem. 2018, 36, 353-362.
For a selection of general reviews on the use of CO2 as C1-synthon in
organic synthesis see: a) Q. L, L. Wu, R. Jackstell, M. Beller, Nat.
Commun. 2014, 5, 1-15; b) D. Yu, S. P. Teong, Y. Zhang, Coord. Chem.
Rev. 2015, 293-294, 279-291; c) A. Tlili, E. Blondiaux, X. Frogneux, T.
Cantat, Green Chem. 2015, 17, 157-168; d) J. Klankermayer; S.
Wesselbaum, K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, 55,
7296-7343; e) X.-F. Wu, M. Beller, Top. Curr. Chem. 2017, 376; f) S.
Dabral, T. Schaub, Adv. Synth. Catal. 2019, 361, 223-246; g) R. R.
Shaikh, S. Pornpraprom, V. D’Elia, ACS Catal. 2018, 8, 419-450; h) C.S.
Yeung, Angew. Chem. Int. Ed. 2019, 58, 2-13; i) J. R. Cabrero-Antonino,
R. Adam, M. Beller, Angew. Chem. Int. Ed. 2019, early view.
[4]
For recent examples on the use of CO2 as reductive C(1) source see: G.
Xiang, Y. Bo, Y. Zhenzhen, Z. Yanfei, Z. Hongye, H. Leiduan, H. Buxing,
ACS Catal. 2015, 5, 6648-6652; b) Z. Zhang, Q. Sun, C. Xia, W. Sun,
Org. Lett. 2016, 18, 6316-6319; c) X.-D. Lang, L.-N. He, ChemSusChem
2018, 11, 2062-2067; d) K. Yan, J. Jin, Y. Kong, B. Li, B. Wang, Adv.
Synth. Catal. 2019, 361, 3080-3085.
[5]
[6]
a) Z. Zhang, T. Ju, J.-H. Ye, D.-G. Yu, Synlett, 2017, 28, 741-750; b) H.
Wang, Z. Xin, Y. Li, Top. Curr. Chem. 2017, 375, 49.
a) K. Sasano, J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2013, 135,
10954-10957; b) Z. Zhang, L.-L. Liao, S.-S. Yan, L. Wang, Y.-Q. He, J.-
H. Ye, J. Li, Y.-G. Zhi, D.-G. Yu, Angew. Chem. Int. Ed. 2016, 55, 7068-
7072; c) S. Sun, W.-M. Hu, N. Gu, J. Cheng, Chem. Eur. J. 2016, 22,
18729-18732; d) S. Wang, P. Shao, G. Du, C. Xi, J. Org. Chem. 2016,
81, 6672-6676; e) L. Song, G.-M. Cao, W.-J. Zhou, J.-H. Ye, Z. Zhang,
X.-Y. Tian, J. Li, D.-G. Yu, Org. Chem. Front. 2018, 5, 2086-2090; f) W.-
Z. Zhang, M.-W. Yang, X.-B. Lu, Green Chem. 2016, 18, 4181-4184.
The possibility to generate in situ CO from CO2 and perform
carbonylative processes in two-chamber reactor was also documented:
a) M. T. Jensen, M. H. Rønne, A. K. Ravn, R. W. Juhl, D. U. Nielsen, X.-
M. Hu, S. U. Pedersen, K. Daasbjerg, T. Skrydstrup, Nat. Commun.
2017, 8, 1-8; b) N. Barsu, D. Kalsi, B. Sundararaju, Catal. Sci. Technol.
2018, 8, 5963-5969.
a) M. Bandini, A. Bottoni, M. Chiarucci, G. Cera, G. Miscione, J. Am.
Chem. Soc. 2012, 134, 20690-20700; b) G. Cera, S. Piscitelli, M.
Chiarucci, G. Fabrizi, A. Goggiamani, R. S. Ramón, S. P. Nolan, M.
Bandini, Angew. Chem. In. Ed. 2012, 51, 9891-9895; c) M. Chiarucci, R.
Mocci, L.-D. Syntrivanis, G. Cera, A. Mazzanti, M. Bandini, Angew.
Chem. Int. Ed. 2013, 52, 10850-10853; d) M. Chiarucci, E. Matteucci, G.
Cera, G. Fabrizi, M. Bandini, Chem. Asian J. 2013, 8, 1776-1779; e) P.
Giacinto, G. Cera, A. Bottoni, M. Bandini, G. P. Miscione, ChemCatChem
2015, 7, 2480-2484; f) Q.-Q. Yang, M. Marchini, W.-J. Xiao, P. Ceroni,
M. Bandini, Chem. Eur. J. 2015, 21, 18052-18056; g) A. De Nisi, S.
Sierra, M. Ferrara, M. Monari, M. Bandini, Org. Chem. Front. 2017, 4,
1849-1853; h) C. Sauer, Y. Liu, A. De Nisi, S. Protti, M. Fagnoni, M.
Bandini, ChemCatChem. 2017,9, 4456-4459; i) L. Favaretto, J. An, M.
[7]
[8]
Scheme 3. Examples of synthetic manipulation of the 3.
In conclusion,
a redox-neutral metal-free dearomative
carbonylation of pyridine derivatives with CO2 is documented. The
three-component one-pot methodology enables the realization of
a large library of densely functionalized and synthetically flexible
imidazo- and oxazolo-pyridinones in excellent yield and chemo-
/regioselective manner. The intriguing role of TBD as a promoter
and RCOCl as an electrophilic CO2 coactivator and acylating
agent are proposed and disclosed by means of combined
experimental, spectroscopic and computational investigations.
Attempts to extend the present CO2 activation mode to the
synthesis of other densely functionalized heterocyclic scaffolds is
currently under way in our laboratories.
Sambo, A. De Nisi, C. Bettini, M. Melucci, A. Kovtun, A. Liscio, V.
Palermo, A. Bottoni, F. Zerbetto, M. Calvaresi, M. Bandini, Org. Lett.
2018, 20, 3705-3709.
[9]
a) G. Cera, M. Chiarucci, A. Mazzanti, M. Mancinelli, M. Bandini, Org.
Lett. 2012, 14, 1350-1353; b) M. Jia, G. Cera, D. Perrotta, M. Bandini,
Chem. Eur. J. 2014, 20, 9875-9878; c) C. Romano, M. Jia, M. Monari, E.
Manoni, M. Bandini, Angew. Chem. Int. Ed. 2014, 53, 13854-13857; d)
M. Jia, M. Monari, Q.-Q. Yang, M. Bandini, Chem. Commun. 2015, 51,
2320-2322; e) L. Rocchigiani, M. Jia, M. Bandini, A. Macchioni, ACS
Catal. 2015, 5, 3911-3915; f) R. Ocello, A. De Nisi, M. Jia, Q.-Q. Yang,
P. Giacinto, A. Bottoni, G.P. Miscione, M. Bandini, Chem. Eur. J. 2015,
21, 18445-18453; g) J. An, A. Parodi, M. Monari, M. Castiñeira Reis, C.
Acknowledgements
MB, ML and MM are grateful to the University of Bologna for
financial support.
This article is protected by copyright. All rights reserved.