Table 3 Substrate scope of the Ph–PMO–SO3H catalyst
solid catalysts (including SBA-15-based catalyst), thus increas-
ing the scope of this recently discovered acid solid catalyst for
aqueous organic reactions.
The authors are grateful to the CNRS and POCI 2010,
FEDER and FCT for financial support (POCI/CTM/ 55648/
2004 and PPCDT/CTM/55648/2004).
Notes and references
1 As selected examples see (a) N. Shapiro and A. Vigalok, Angew.
Chem., Int. Ed., 2008, 47, 2849; (b) C.-J. Li and L. Chen, Chem. Soc.
Rev., 2006, 35, 68; (c) U. M. Lindstrom, Chem. Rev., 2002, 102, 2751.
2 As recent articles: (a) A. Molnar, Curr. Org. Chem., 2008, 12, 159;
(b) C. X. A. Da Silva, V. L. C. Goncalves and C. J. A. Mota, Green
Chem., 2009, 11(1), 38; (c) B. Karimi and D. Zareyee, Org. Lett.,
2008, 10(18), 3989; (d) C. Tagusagawa, A. Takagaki, S. Hayashi
and K. Domen, J. Am. Chem. Soc., 2008, 130(23), 7230;
(e) K. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara and
S. Yamanaka, Angew. Chem., Int. Ed., 2007, 46(40), 7625;
(f) T. Okuhara, Chem. Rev., 2002, 102(10), 3641.
Entry indole
1
R4
Ph
Time (min) Product Yield (%)a
3
3
3b
3c
3d
95
95
85
2
3
Ph
Ph
60
3 As selected reviews see (a) F. Hoffmann, M. Cornelius, J. Morell
and M. Froba, Angew. Chem., Int. Ed., 2006, 45(20), 3216;
(b) E. L. Margelefsky, R. K. Zeidan and M. E. Davis, Chem.
Soc. Rev., 2008, 37(6), 1118; (c) S. Minakata and M. Komatsu,
Chem. Rev., 2009, 109, 711.
4 (a) B. J. Melde, B. T. Holland, C. F. Blanford and A. Stein, Chem.
Mater., 1999, 11, 3302; (b) S. Inagaki, S. Guan, Y. Fukushima,
T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 1999, 121, 9611;
(c) T. Asefa, M. J. MacLachlan, N. Coombs and G. A. Ozin,
Nature, 1999, 402, 867.
5 As review see: (a) B. Hatton, K. Landskron, W. Whitnall, D. Perovic
and G. A. Ozin, Acc. Chem. Res., 2005, 38, 305; (b) Q. Yang, J. Liu,
L. Zhang and C. Li, J. Mater. Chem., 2009, 19, 1945.
6 (a) A. Corma, D. Has, H. Garcia and A. Leyva, J. Catal., 2005,
229, 322; (b) H. Li, M. Xiong, F. Zhang, J. Huang and W. Chai,
J. Phys. Chem. C, 2008, 112, 6366.
4
5
Ph
Ph
60
60
3e
3f
85
85
6
7
Ph–CHQCH– 10
3g
3h
3i
65b
95
CH3(CH2)7–
10
20
8
65
7 S. Inagaki, S. Guan, T. Ohsuna and O. Terasaki, Nature, 2002,
416, 304.
a
b
Isolated yield. The 35% missing comes from the Michael addition
of indole to the cinnamaldehyde.
8 (a) B. Rac, P. Hegyes, P. Forgo and A. Molnar, Appl. Catal., A,
2006, 299, 193; (b) M. Rat, M. H. Zahedi-Niaki, S. Kaliaguine and
T. O. Do, Microporous Mesoporous Mater., 2008, 112, 26;
(c) Q. Yang, M. P. Kapoor, S. Inagaki, N. Shirokura,
J. N. Kondo and K. Domen, J. Mol. Catal. A: Chem., 2005, 230,
85; (d) Q. Yang, J. Liu, M. P. Kapoor, S. Inagaki and C. Li,
J. Catal., 2004, 228, 265.
was mixed with 1 mmol of 1-phenylpropan-1-ol and stirred at
100 1C in the presence of 10 mg of Ph–PMO–SO3H (0.02 eq. of
–SO3H). After 1 h, the benzylalcohol was totally consumed
and the desired monoethers of glycerol were recovered with
85% yield (the 15% remaining are dibenzylethers of glycerol).
As observed above, using SBA–SO3H as catalyst, a strong
deactivation occurs cycle after cycle (Scheme 1). Remarkably,
in glycerin, we found that Ph–PMO–SO3H was much more
robust and can be recycled at least 5 times without any loss of
activity further demonstrating the great potential of
Ph–PMO–SO3H for catalyzing aqueous organic reactions.16
In conclusion, we have shown that, in water, Ph–PMO–SO3H
is more active and more robust than the commonly used acid
9 P. L. Dhepe, M. Ohashi, S. Inagaki, M. Ichikawa and A. Fukuoka,
Catal. Lett., 2005, 102(3–4), 163.
10 (a) C. A. Bradfield and L. F. Bjeldanes, J. Toxicol. Environ. Health,
1987, 21, 311; (b) R. H. Dashwood, L. Uyetake, A. T. Fong,
J. D. Hendricks and G. S. Bailey, Food Chem. Toxicol., 1987, 27,
385; (c) M. A. Zeligs, J. Med. Food, 1998, 1, 67.
11 (a) S.-Y. Wang and S.-J. Ji, Synth. Commun., 2008, 38, 1291;
(b) N. Azizi, L. Torkian and M. R. Saidi, J. Mol. Catal. A: Chem.,
2007, 275, 109.
12 I. K. Mbaraka, D. R. Radu, V. S.-Y. Lin and B. H. Shanks,
J. Catal., 2003, 219, 329.
13 V. L. Budarin, J. H. Clark, R. Luque and D. J. Macquarrie, Chem.
Commun., 2007, 634.
14 A. Cassez, A. Ponchel, F. Hapiot and E. Monflier, Org. Lett.,
2006, 8(21), 4823.
15 (a) F. Jerome, Y. Pouilloux and J. Barrault, ChemSusChem, 2008,
1(7), 586; (b) C.-H. Zhou, J. N. Beltramini, Y. X. Fan and G. Q. Lu,
Chem. Soc. Rev., 2008, 37(3), 527; (c) M. Pagliaro, R. Ciriminna,
H. Kimura, M. Rossi and C. Della Pina, Angew. Chem., Int. Ed.,
2007, 46, 4434; (d) A. Behr, J. Eilting, K. Irawadi, J. Leschinski and
F. Lindner, Green Chem., 2008, 10, 13; (e) Y. Zheng, X. Chen and
Y. Shen, Chem. Rev., 2008, 108(12), 5253; (f) M. Pagliaro and
M. Rossi, The Future of Glycerol: New Usages for a Versatile Raw
Material, RSC Publishing, Cambridge, UK, 2008.
16 Note that the Amberlyst 15 (wet) was also found to be far less
active than the Ph–PMO–SO3H catalyst affording the correspond-
ing monoethers of glycerol with only 25% yield after 1 h of
reaction at 100 1C.
Scheme 1 Catalytic etherification of glycerin over Ph–PMO–SO3H.
7002 | Chem. Commun., 2009, 7000–7002
ꢀc
This journal is The Royal Society of Chemistry 2009