10.1002/chem.201902818
Chemistry - A European Journal
COMMUNICATION
Román, J. F. Sanz-Cervera, A. Simón-Fuentes, J. Bueno, S. Villanova,
J. Org. Chem. 2008, 73, 8545-8552.
kcal/mol higher in energy. Anion Int-A1 is ambident and C-
bonding to iodane 2 was also investigated; the RDS (TS-
CBonded, in green) of this pathway, which would lead to a N-CF3
hydrazone, was found to be disfavored by 3.5 kcal/mol over the
proposed mechanism. In analogy to Int-A4, we could not find the
alternative [1,2]-reductive elimination transition structure from the
C-bonded intermediate, which would lead to Int-A5. Overall, the
calculations are in good agreement with the control experiments
and support the illustrated mechanism.
[4]
For related processes involving alternate deoxygenation strategies see
a) C. H. DePuy, A. L. Schultz, J. Org. Chem. 1974, 39, 878-881; b) E. V.
Eliseenkov, A. S. Koginov, A. S. Dneprovskii, Zh. Org. Khim. 1978, 14,
781-785; c) H. F. Koch, W. Tumas, R. Knoll, J. Am. Chem. Soc. 1981,
103, 5423-5429; d) T. Okano, K. Ito, T. Ueda, H. Muramatsu, J. Fluorine
Chem. 1986, 32, 377-388.
[5]
[6]
a) B. V. Nguyen, D. J. Burton, J. Org. Chem. 1997, 62, 7758-7764; b) C.-
C. Lee, S.-T. Lin, J. Chem. Res. 2000, 2000, 142-144; c) L. Zhu, Y. Li, Y.
Zhao, J. Hu, Tetrahedron Lett. 2010, 51, 6150-6152; d) Y. Qiao, T. Si,
M.-H. Yang, R. A. Altman, J. Org. Chem. 2014, 79, 7122-7131.
a) Q.-Y. Chen, S.-W. Wu, J. Chem. Soc., Chem. Commun. 1989, 705-
706; b) H. Urata, T. Fuchikami, Tetrahedron Lett. 1991, 32, 91-94; c) S.
De-Bao, D. Jian-Xiang, C. Qing-Yun, Tetrahedron Lett. 1991, 32, 7689-
7690; d) Q.-Y. Chen, J.-X. Duan, J. Chem. Soc., Chem. Commun. 1993,
1389-1391; e) J. M. Paratian, E. Labbé, S. Sibille, J. Périchon, J.
Organomet. Chem. 1995, 489, 137-143; f) J. Kim, J. n. M. Shreeve, Org.
Biomol. Chem. 2004, 2, 2728-2734; g) G. G. Dubinina, H. Furutachi, D.
A. Vicic, J. Am. Chem. Soc. 2008, 130, 8600-8601; h) H. Kawai, T.
Furukawa, Y. Nomura, E. Tokunaga, N. Shibata, Org. Lett. 2011, 13,
3596-3599; i) M. M. Kremlev, A. I. Mushta, W. Tyrra, Y. L. Yagupolskii,
D. Naumann, A. Möller, J. Fluorine Chem. 2012, 133, 67-71; j) J. M.
Larsson, S. R. Pathipati, K. J. Szabó, J. Org. Chem. 2013, 78, 7330-
7336; k) X. Jiang, F.-L. Qing, Beilstein J. Org. Chem. 2013, 9, 2862-2865;
l) J.-L. Li, X.-J. Yang, Y. Wang, J.-T. Liu, J. Fluorine Chem. 2015, 178,
254-259.
In conclusion, the first denitrogenative hydrotrifluoro-
methylation of benzaldehyde hydrazones has been successfully
developed using Togni’s widely available benziodoxolone reagent.
Using this method, substrates possessing a wide range of
functional groups and substitution patterns were efficiently
converted into the desired (trifluoroethyl)arenes. Computational
analysis of this novel reaction led to a mechanistic proposal in
which the key trifluoromethylation step occurs in concert with
reductive elimination of the iodoarene. This operationally simple
process relies on a safe and reliable hypervalent iodine reagent,
and consists of a new, rapid and highly efficient strategy to
synthesize these valuable motifs. Given the prevalence of these
motifs in biologically active compounds, and the easy access to
the requisite hydrazone precursors, this synthetic strategy holds
significant potential.
[7]
For analogous strategies employing related nucleophilic species’ see Ref
5c and a) Q.-Y. Chen, G.-Y. Yang, S.-W. Wu, J. Fluorine Chem. 1991,
55, 291-298; b) G. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A.
Olah, Science 2012, 338, 1324-1327; c) M. Paeth, W. Carson, J.-H. Luo,
D. Tierney, Z. Cao, M.-J. Cheng, W. Liu, Chem. Eur. J. 2018, 24, 11559-
11563.
Acknowledgements
This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada, the
University of Waterloo and l’Université de Sherbrooke. Additional
financial support was provided by the Early Researcher Award
from the Province of Ontario (GKM). This research was enabled
in part by support provided by Compute Canada
(www.computecanada.ca).
[8]
[9]
H. Jia-Bin, H. Jian-Hong, Z. Cheng-Pan, Q. Hua-Li, Curr. Org. Chem.
2015, 19, 1554-1565.
a) V. C. R. McLoughlin, J. Thrower, Tetrahedron 1969, 25, 5921-5940;
b) S. Xu, H.-H. Chen, J.-J. Dai, H.-J. Xu, Org. Lett. 2014, 16, 2306-2309.
[10] a) W. Song, S. Lackner, L. Ackermann, Angew. Chem., Int. Ed. 2014, 53,
2477-2480; Angew. Chem. 2014, 126, 2510-2513; b) X. Zhang, C. Yang,
Adv. Synth. Catal. 2015, 357, 2721-2727; c) S.-Y. Yan, Z.-Z. Zhang, B.-
F. Shi, Chem. Commun. 2017, 53, 10287-10290.
[11] Y. Ohtsuka, T. Yamakawa, J. Fluorine Chem. 2016, 185, 96-102.
[12] Y. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A.
Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P.
S. Baran, Nature 2012, 492, 95-99.
Keywords: hydrazones • trifluoromethylation • fluorine • Wolff-
Kishner • hypervalent iodine
[1]
[2]
[3]
a) J.-P. Bégué, D. Bonnet-Delpon, Bioorganic and Medicinal Chemistry
of Fluorine, John Wiley & Sons, Hoboken, N.J., 2008, p 365; b) Q. A.
Huchet, B. Kuhn, B. Wagner, N. A. Kratochwil, H. Fischer, M. Kansy, D.
Zimmerli, E. M. Carreira, K. Müller, J. Med. Chem. 2015, 58, 9041-9060;
c) P. A. Champagne, J. Desroches, J. D. Hamel, M. Vandamme, J. F.
Paquin, Chem. Rev. 2015, 115, 9073-9174; d) Y. Zhou, J. Wang, Z. N.
Gu, S. N. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok, K. Izawa, H. Liu,
Chem. Rev. 2016, 116, 422-518; e) C. Ni, J. Hu, Chem. Soc. Rev. 2016,
45, 5441-5454; f) V. Gouverneur, R. Szpera, D. F. J. Moseley, L. B. Smith,
A. J. Sterling, Angew. Chem., Int. Ed. 2019, 10.1002/anie.201814457
a) A. van Oeveren, M. Motamedi, N. S. Mani, K. B. Marschke, F. J. López,
W. T. Schrader, A. Negro-Vilar, L. Zhi, J. Med. Chem. 2006, 49, 6143-
6146; b) O. S. Kanishchev, A. Lavoignat, S. Picot, M. Médebielle, J.-P.
Bouillon, Biorg. Med. Chem. Lett. 2013, 23, 6167-6171; c) M. T. Baker,
Anesth. Analg. 2011, 112, 340-344; d) R. Vorberg, N. Trapp, D. Zimmerli,
B. Wagner, H. Fischer, N. A. Kratochwil, M. Kansy, E. M. Carreira, K.
Müller, Chemmedchem 2016, 11, 2216-2239; e) F. Xu, M. Zacuto, N.
Yoshikawa, R. Desmond, S. Hoerrner, T. Itoh, M. Journet, G. R.
Humphrey, C. Cowden, N. Strotman, P. Devine, J. Org. Chem. 2010, 75,
7829-7841.
[13] M. Zhu, X. Han, W. Fu, Z. Wang, B. Ji, X.-Q. Hao, M.-P. Song, C. Xu, J.
Org. Chem. 2016, 81, 7282-7287.
[14] H. Zhang, P. Chen, G. Liu, Angew. Chem., Int. Ed. 2014, 53, 10174-
10178; Angew. Chem. 2014, 126, 10338-10342.
[15] a) Y. Zhao, J. Hu, Angew. Chem., Int. Ed. 2012, 51, 1033-1036; Angew.
Chem. 2012, 124, 1057-1060; b) A. Liang, X. Li, D. Liu, J. Li, D. Zou, Y.
Wu, Y. Wu, Chem. Commun. 2012, 48, 8273-8275; c) F. Leng, Y. Wang,
H. Li, J. Li, D. Zou, Y. Wu, Y. Wu, Chem. Commun. 2013, 49, 10697-
10699.
[16] G. Wu, Y. Deng, C. Wu, X. Wang, Y. Zhang, J. Wang, Eur. J. Org. Chem.
2014, 2014, 4477-4481.
[17] a) V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure,
and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley
& Sons, 2013; b) T. Wirth, Hypervalent Iodine Chemistry, Springer-
Verlag, Berlin, 2016; c) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016,
116, 3328-3435; d) PATAI'S Chemistry of Functional Groups, I. Marek,
B. Olofsson, Z. Rappoport (Ed.), Wiley, New York 2018.
[18] a) T. Umemoto, Y. Gotoh, J. Fluorine Chem. 1985, 28, 235-239; b) V.
Montanari, G. Resnati, Tetrahedron Lett. 1994, 35, 8015-8018; c) J.
Zhang, G. R. Martin, D. D. DesMarteau, Chem. Commun. 2003, 2334-
2335; d) G. L. Tolnai, A. Székely, Z. Makó, T. Gáti, J. Daru, T. Bihari, A.
Stirling, Z. Novák, Chem. Commun. 2015, 51, 4488-4491; e) B. L. Tóth,
S. Kovács, G. Sályi, Z. Novák, Angew. Chem., Int. Ed. 2016, 55, 1988-
1992; Angew. Chem. 2016, 128, 2028-2032; f) J. Yang, Q.-Y. Han, C.-L.
a) J. R. Del Valle, M. Goodman, Angew. Chem., Int. Ed. 2002, 41, 1600-
1602; Angew. Chem. 2002, 114, 1670-1672; b) F. Jeannot, G. Gosselin,
C. Mathé, Org. Biomol. Chem. 2003, 1, 2096-2102; c) S. Fustero, R.
This article is protected by copyright. All rights reserved.