10.1002/chem.202100527
Chemistry - A European Journal
FULL PAPER
[3]
(a) C. I. Gama, S. E. Tully, N. Sotogaku, P. M. Clark, M. Rawat, N.
Vaidehi, W. A. Goddard, A. Nishi, L. C. Hsieh-Wilson, Nat. Chem. Biol.
2006, 2, 467-473; Also see for example, a review on heparan sulfate-
protein interactions: (b) D. Xu, J. D. Esko, Annu. Rev. Biochem. 2014,
83, 129-157.
Conclusion
The present study describes an efficient synthetic route to the
largest single-species sulfated xylooligomers reported to date.
As key constituents of the therapeutically-relevant sulfated
xylooligosaccharide drug Pentosan PS, these synthetic
standards were targeted as valuable tools for deconvoluting the
composition of the complex, heterogeneous nature of this
therapeutically deployed material. Towards this objective, near-
quantitative sulfation of xylooligomers was accomplished
through the use of methyl chlorosulfate in DMF as a mild and
operationally simple approach to the in situ generation of
SO3•DMF. This sulfation protocol was extended to a variety of
aliphatic and aromatic alcohols, encompassing amino acids,
steroids and acid-sensitive substrates. Its use in the preparation
of a novel sulfated and pyridinium-ion containing xylotriose
facilitated the identification of anomeric a-pyridinium
contaminants in a commercial source of Pentosan PS 1—a
finding which may have important implications for enhancing the
safety profile of treatments employing this material. Finally,
detailed conformational analyses of certain sulfated
[4]
[5]
H. Habuchi, O. Habuchi, K. Kimata, Glycoconj. J. 2004, 21, 47-52.
(a) P. Chopra, A. Joshi, J. Wu, W. Lu, T. Yadavalli, M.A. Wolfert, D.
Shukla, J. Zaia, G-J. Boons, Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (3)
e2012935118; (b) B. E. Thacker, D. Xua, R. Lawrence, J. D. Esko,
Matrix Biol. 2014, 35, 60-72.
[6]
[7]
(a) B. Ernst, J. L. Magnani, Nat. Rev. Drug Discov. 2009, 8, 661-677;
(b) R. A. Scott, A. Panitch, Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 2013, 5, 388-398.
(a) W. A. Pearce, R. Chen, N. Jain, Ophthalmology 2018, 125, 1793-
1802; (b) A. M. Hanif, R. Shah, J. Yan, J. S. Varghese, S. A. Patel, B. E.
Cribbs, G. O’Keefe, A. M. Hendrick, J. G. Shantha, G. B. Hubbard, P. S.
Patel, P. Rao, S. Yeh, N. Jain, Ophthalmology 2019, 126, 1464-1466;
(c) M. J. Wingelaar, J. J. Raevis, K. A. Conlin, K. E. Stepien, Urology
2020, 141, e41-e42.
[8]
(a) For partially sulfated methyl-b-xylobioside and methyl-b-xylotrioside
see: B. Abad-Romero, K. Mereiter, H. Sixta, A. Hofinger, P. Kosma,
Carbohydr. Res. 2009, 344, 21-28; (b) Persulfated D-xylobiose and
methyl-b-D-xylobioside have recently been reported: C. H. O. Meara, L.
A. Coupland, F. Kordbacheh, B. J. C. Quah, C.-W. Chang, D. A. Simon
Davis, A. Bezos, A. M. Browne, C. Freeman, D. J. Hammill, P. Chopra,
G. Pipa, P. D. Madge, E. Gallant, C. Segovis, A. F. Dulhunty, L. F.
Arnolda, I. Mitchell, L. M. Khachigian, R. W. Stephens, M. von Itzstein,
C. R. Parish, Nat. Commun. 2020, 11, 6408.
xylooligosaccharides revealed
a
preference for the 1C4
conformer in all associated non-reducing residues. Given the
importance of sulfate arrays in GAG binding interactions, this
structural information is expected to provide a means for the
development of PPS-type drugs with improved therapeutic
profiles. Studies probing the biological activity of the discrete
Pentosan “standards” described above are currently underway
in our laboratories.
[9]
R. A. Al-Horani, U. R. Desai, Tetrahedron 2010, 66, 2907-2918.
[10] (a) S. Daus, K. Petzold-Welcke, M. Kötteritzsch, A. Baumgaertel, U. S.
Schubert, T. Heinze, Macromol. Mater. Eng. 2011, 296, 551-561; (b) K.
Tihlarik, E. Lattova, Chem. Pap. 1991, 45, 547-552.
[11] (a) L. Gabriel, W. Günther, F. Pielenz, T. Heinze, Macromol. Chem.
Phys. 2020, 221, 1900327; (b) A. Alekseeva, R. Raman, G. Eisele, T.
Clark, A. Fisher, S. Lee, X. Jiang, G. Torri, R. Sasisekharan, S. Bertini,
Carbohydr. Polym. 2020, 234, 115913; (c) R. Sagar, S. Rudić, D. P.
Gamblin, E. M. Scanlan, T. D. Vaden, B. Odell, T. D. W. Claridge, J. P.
Simons, B. G. Davis, Chem. Sci. 2012, 3, 2307-2313; (d) L. Ahrgren, A.
N. de Belder, T. Mälson, Carbohydr. Polym. 1991, 16, 211-214.
[12] K. C. Probst, H. P. Wessel, J. Carbohydr. Chem. 2001, 20, 549-560.
[13] A. G. Gerbst, V. B. Krylov, N. E. Nifantiev, Pure Appl. Chem. 2019, 91,
1223-1229.
Experimental Section
See supporting information for experimental details.
Acknowledgements
[14] T. Nagatsuka, H. Uzawa, Y. Nishida, Chem. Commun. 2009, 27, 4109-
4111.
We are grateful to Beta Therapeutics Pty. Ltd. for providing
funding for this work. We thank Dr. Tristan Reekie (ANU) for
providing a sample of cubylmethanol. We would also like to
acknowledge Ms. Anitha Jeyasingham and Mr. Joseph Boileau
(ANU) for assistance with mass spectrometry, Dr. Chris Blake
(ANU) for support with NMR spectroscopy, Mr. Daniel Bartkus
and Dr. Nicholas Kanizaj (ANU) for technical assistance, and Mr.
Christopher Fitzgerald and Assoc. Prof. Malcolm McLeod for
useful discussions.
[15] E. E. Gilbert, Chem. Rev. 1962, 62, 549-589.
[16] Common reagents include: SO3•pyridine, SO3•NMe3, SO3•NBu3: (a) D.
M. Gill, L. Male, A. M. Jones, Chem. Commun. 2019, 55, 4319–4322;
(b) J. A. Alshehri, A. M. Benedetti, A. M. Jones, Sci. Rep. 2020, 10,
16559.
[17] (a) A. Raghuraman, M. Riaz, M. Hindle, U. R. Desai, Tetrahedron Lett.
2007, 48, 6754-6758; (b) S. Maza, J. L. de Paz, P. M. Nieto,
Tetrahedron Lett. 2011, 52, 441-443.
[18] V. B. Krylov, N. E. Ustyuzhanina, A. A. Grachev, N. E. Nifantiev,
Tetrahedron Lett. 2008, 49, 5877-5879.
[19] M. von Itzstein, C.-W. Chang, Patent WO 2019113646A1. Sulfation
method, 2019.
[20] SO3•DMF is commercially available but is only intermittently available in
Australia. The reagent can be freshly prepared according to literature
protocols: (a) M. L. Wolfrom, T. M. Shen Han, J. Am. Chem. Soc. 1959,
81, 1764-1766; (b) W. L. Garbrecht, J. Org. Chem. 1959, 24, 368-372;
(c) D. W. Clayton, J. A. Farrington, G. W. Kenner, J. M. Turner, Chem.
Soc. 1957, 1398-1407.
Keywords: carbohydrates • conformation analysis • pentosan •
persulfation • xylooligosaccharides
[1]
Steroids: (a) J. W. Mueller, L. C. Gilligan, J. Idkowiak, W. Arlt, P. A.
Foster, Endocr. Rev. 2015, 36, 526-563; Tyr Sulfation: (b) Y.-S. Yang,
C.-C. Wang, B.-H. Chen, Y.-H. Hou, K.-S. Hung, Y.-C.
Mao, Molecules 2015, 20, 2138-2164; (c) M. J. Stone, R. J. Payne, Acc.
Chem. Res. 2015, 48, 2251-2261.
[21] S. Coffey, D. A. W. Fairweather, D. E. Hathaway, F. H. Slinger, U. S.
Patent 2,563,819, 1951; Chem. Abstracts, 1951, 45, 9881
[22] Despite its ease of preparation, very few uses of methyl chlorosulfate
have been reported. See for example: (a) M. S. Heller, D. P. Lorah, C.
P. Cox, J. Chem. Eng. Data 1983, 28, 134-137; (b) R. J. Cremlyn, L.
Wu, Phosphorus Sulfur Relat. Elem. 1988, 39, 165-171. (c) C.
Chatgilialoglu, D. Griller, S. Rossini, J. Org. Chem. 1989, 54, 2734-
[2]
D. Soares da Costa, R. L. Reis, I. Pashkuleva, Annu. Rev. Biomed. Eng.
2017, 19, 1-26.
7
This article is protected by copyright. All rights reserved.