the hydroalkoxylation of enol ether substructures.7 As part of our
ongoing studies on metal-catalyzed atom-economical reactions, we
have been interested in the use of gold for simple and highly
efficient transformations.8 As a continuation of our studies on gold-
catalyzed addition, in this paper, we wish to develop a gold(I)
complex catalyzed hydroalkoxylation of alkoxyallenes to synthesize
allylic acetals in mild condition.9
Gold-Catalyzed Hydroalkoxylation of Alkoxyallenes
Dong-Mei Cui,*,† Zhi-Ling Zheng,† and Chen Zhang*,‡
College of Pharmaceutical Science, Zhejiang UniVersity of
Technology, Hangzhou 310014, People’s Republic of China,
and School of Pharmaceutical Sciences, Zhejiang UniVersity,
Hangzhou 310058, People’s Republic of China
Our initial explorations focused on the reaction of 3,4-
dimethoxybenzyoxyallene (1a) (0.2 mmol) with phenylmethanol
(2a) (0.4 mmol) in the presence of a catalytic amount of
(Ph3P)AuNO310 (2 mol %) in dichloroethane (1.5 mL) at -15 °C
to room temperature for 4 h, which proceeded efficiently to form
allylic acetal 3a in 67% yield (Table 1, entry 1). Efficient
hydroalkoxylation was realized with significantly lower catalyst
loading (Table 1, entry 2). Investigation of starting material
stoichiometries revealed that a slight excess of allene (1.5-2 equiv)
was necessary to drive the alcohol to full conversion (Table 1,
entries 4-6).11 The yields of the acetals depended upon their
sensitivity to decomposition during workup. Adding a small amount
of triethylamine after reaction completion allowed the acetals to
be isolated in high yields (Table 1, entry 6). Different solvents
were screened, and dichloroethane was found to be the best one
(Table 1, entries 7-9). The reaction did not proceed in the absence
of the Au catalyst (Table 1, entry 10).
ReceiVed NoVember 11, 2008
We report synthesis of allylic acetals via gold-catalyzed
hydroalkoxylation of alkoxyallenes with alcohols containing
primary and secondary alcohols in good to excellent yields
under mild condition.
To assess the scope of this process, we have examined the
hydroalkoxylation of several alkoxyallenes with alcohols under the
optimized condition indicated in entry 6 of Table 1. The results
are summarized in Table 2. In alcohols, secondary alcohols can
serve as good substrates to afford the allylic acetals (Table 2, entries
2 and 3). Benzyl alcohols with not only an electron-donating alkoxy
group but also an electron-withdrawing chloro group on the
The hydroalkoxylation of alkoxyallenes represents one of the
most effective and atom-economical methods to prepare allylic
acetals which are invaluable precursors for synthesis of natural
products and other potentially biologically relevant substances.1
In 1997, Alper et al.2 reported the first example of a palladium-
mediated hydroalkoxylation of alkoxyallenes and later further
developed by Rutjes.3 But, it is worthy to note that other transition
metals have not been used in this hydroalkoxylation, besides the
palladium complex. On the other hand, Au salts are power soft
Lewis acids and readily activate unsaturated C-C bonds toward
attacks by a variety of nucleophiles for the formation of
carbon-carbon and carbon-heteroatom bonds.4-6 A variety of
structural motifs have been efficiently accessed under exceedingly
mild reaction condition. Recently, Hashmi et al. have also reported
(4) For recent reviews, see:(a) Skouta, R.; Li, C.-J. Tetrahedron 2008, 64,
4917. (b) Shen, H. C. Tetrahedron 2008, 64, 3885. (c) Muzart, J. Tetrahedron
2008, 64, 5815. (d) Hashmi, A. S. K. Chem. ReV. 2007, 107, 3180. (e) Hashmi,
A. S. K. Gold Bull. 2004, 37, 51. (f) Arcadi, A.; Di Giuseppe, S. Curr. Org.
Chem. 2004, 8, 795.
(5) For examples see:(a) Skouta, R.; Li, C. J. Angew. Chem., Int. Ed. 2007,
46, 1117. (b) Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062. (c)
Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc.
2003, 125, 11925. (d) Gonzalez-Arellano, C.; Abad, A.; Corma, A.; Garcia, H.;
Iglesias, M.; Sanchez, F. Angew. Chem., Int. Ed. 2007, 46, 1536. (e) Zhang,
Z. B.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283. (f) Hashmi,
A. S. K.; Weyrauch, J. P.; Kurpejovie`, E.; Frost, T. M.; Miehlich, B.; Frey, W.;
Bats, J. W. Chem. Eur. J. 2006, 12, 5806. (g) LaLonde, R. L.; Sherry, B. D.;
Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452. (h) Me′zailles, N.;
Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133.
(6) (a) Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Geneˆt, J.-P.;
Michelet, V. J. Am. Chem. Soc. 2006, 128, 3112. (b) Sun, J.; Conley, M. P.;
Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705. (c) Sherry, B. D.;
Maus, L.; Laforteza, B. N.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 8132.
(7) (a) Hashmi, A. S. K.; Enns, E.; Frost, T. M.; Scha¨er, S.; Frey, W.;
Rominger, F. Synthesis 2008, 2707. (b) Hashmi, A. S. K.; Scha¨er, S.; Wo¨fle,
M.; Diez Gil, C.; Fischer, P.; Laguna, A.; Blanco, M. C.; Concepcion Gimeno,
M. Angew. Chem. 2007, 119, 6297. (c) Hashmi, A. S. K.; Scha¨er, S.; Wo¨fle,
M.; Diez Gil, C.; Fischer, P.; Laguna, A.; Blanco, M. C.; Concepcion Gimeno,
M. Angew. Chem., Int. Ed. 2007, 46, 6184. (d) Hashmi, A. S.; Rudolph, K. M.;
Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. Chem. Eur. J. 2008, 14, 6672.
(8) Zhang, C.; Cui, D.-M.; Yao, L.-Y.; Wang, B.-S.; Hu, Y.-Z.; Hayashi, T.
J. Org. Chem. 2008, 73, 7811.
† Zhejiang University of Technology.
‡ Zhejiang University.
(1) For examples see:(a) Donnard, M.; Tschamber, T.; Desrat, S.; Hinsinger,
K.; Eustache, J. Tetrahedron Lett. 2008, 49, 1192. (b) Donohoe, T. J.; Kershaw,
N. M.; Orr, A. J.; Wheelhouse, K. M. P.; Fishlock, L. P.; Lacy, A. R.; Bingham,
M.; Procopion, P. A. Tetrahedron Lett. 2008, 49, 809. (c) Attolino, E.; Rising,
T. W. D. F.; Heidecke, C. D.; Fairbanks, A. J. Tetrahedron: Asymmetry 2007,
18, 1721. (d) Attolion, E.; Fairbanks, A. J. Tetrahedron Lett. 2007, 48, 3061.
(e) Donohoe, T. J.; Orr, A. J.; Gosby, K.; Bingham, M. Eur. J. Org. Chem.
2005, 1969. (f) Yu, X. M.; Han, H. J.; Blagg, B. S. J. J. Org. Chem. 2005, 70,
5599. (g) Gallagher, B. M., Jr.; Fang, F. G.; Johannes, C. W.; Pesant, M.;
Tremblay, M. R.; Zhao, H. J.; Akacaka, K.; Li, X. Y.; Liu, J.; Littlefield, B. A.
Bioorg. Med. Chem. Lett. 2004, 14, 575. (h) Held, C.; Fro¨hlich, R.; Metz, P.
Angew. Chem., Int. Ed. 2001, 40, 1058. (i) Nadolski, G.; Davidson, B. S.
Tetrahedron Lett. 2001, 42, 797. (j) Doodeman, G.; Rutjes, F. D. J. T.; Hiemstra,
H. Tetrahedron Lett. 2000, 41, 5979. (k) Ovaa, H.; Leeuwenburgy, M. A.;
Overkleeft, H. S.; Marel, G. A.; Boom, J. H. Tetrahedron Lett. 1998, 39, 3025.
(l) Panetta, J. A.; Rapoport, H. J. Org. Chem. 1982, 47, 946.
(9) For recent reports on Au-catalyzed intramolecular hydroalkoxylation of
alkoxyallenes see: (a) Dugovie`, B.; Reissig, H.-U. Synlett 2008, 769. (b) Brasholz,
M.; Reissig, H.-U. Synlett 2007, 1294.
(10) Mueting, A. M.; Alexander, B. D.; Boyle, P. D.; Casalnuovo, A. L.;
Ito, L. N.; Johnson, B. J.; Pignolet, L. H. Inorg. Synth. 1992, 29, 280.
(11) 3,4-Dimethoxybenzyoxy allene was found to decompose to 3,4-
dimethoxyphenole under the reaction condition.
(2) Okuro, K.; Alper, H. J. Org. Chem. 1997, 62, 1566.
(3) (a) Kinderman, S. S.; Doodeman, R.; Beijma, J. W. V.; Russcher, J. C.;
Tjen, K. C. M. F.; Kooistra, T. M.; Mohaselzadeh, H.; Maarseveen, J. H. V.;
Hiemstra, H.; Schoemaker, H. E.; Rutjies, F. P. J. T. AdV. Synth. Catal. 2002,
344, 736. (b) Rutjes, F. P. J. T.; Kooistra, T. M.; Hiemstra, H.; Schoemaker,
H. E. Synlett 1998, 192.
1426 J. Org. Chem. 2009, 74, 1426–1427
10.1021/jo802513a CCC: $40.75 2009 American Chemical Society
Published on Web 12/19/2008