Journal of the American Chemical Society
COMMUNICATION
may be a result of production of diffusible hypobromous acid.
Our results suggest that although the MCD assay is a benchmark
assay used to quantify and isolate new general-activity halopero-
xidases,23 it may not be suitable for isolating new V-CPOs in
bacterial natural product biosynthesis.
UCSD Chemistry and Biochemistry Mass Spectrometry Facility
and NMR Facility, respectively, for instrument expertise. This
work was generously supported by research grants from the NIH
(AI047818) and the California Sea Grant Program (R/NMP-
100) to B.S.M., postdoctoral fellowships from the NIH
(GM096711) to P.B. and JSPS to A.M., a Ruth L. Kirschstein
National Research Service Award to J.M.W. from the NIH
Training Program in Marine Biotechnology (GM067550), and
the Naito Foundation for sabbatical support to T.O.
To obtain insight into the substrate binding of NapH1, we
compared amino acid sequence alignments with available crystal
structures of the more promiscuous V-HPOs, C. inaequalis
V-CPO (CiCPO) and CoBPO (SI).24,25 From this, we selected
two residues in NapH1, His420 and Ser427, that had previously
been proposed to be involved in determining the specificity of
V-HPOs.3,19 His420 is a histidine and phenylalanine in CoBPO
and CiCPO, respectively, while Ser427 is a histidine in CoBPO
and CiCPO. After constructing the His420Phe and Ser427His
mutants of NapH1 using site-directed mutagenesis, we expressed
and purified the resulting enzyme variants. Purified His420Phe
NapH1 was inactive in the MCD assay and in the chlorination and
bromination of SF2415B1 3 (Figure S7, SI). Interestingly, how-
ever, while Ser427His NapH1 showed near wild type activity at
approximately 70% in the MCD assay, this mutant enzyme was
unable to catalyze the conversion of substrate 3 into SF2415B3 4 or
bromo-SF2415B3 5. Instead, Ser427His NapH1 exclusively cata-
lyzed the formation of SF2415B1-based bromohydrins (Figure 1A).
Hence the activity with SF2415B1 3 can be completely abolished by
a single point mutation to NapH1, Ser427His, without compromis-
ing the ability to produce activated brominating species.
V-BPO is known to endogenously contain bromine atoms on
side-chains,26 presumably acquired in post-translation through
self-halogenation. It is possible that the activated brominating
species produced by NapH1 reacts with an amino acid side-chain,
and thus creates an alternative means for the activated brominat-
ing species to brominate MCD, or initiate the formation of
bromohydrins. Future experiments will seek to further understand
the interplay of specific and nonspecific halogenation events.
In summary, we have described the first highly substrate-
selective vanadium haloperoxidase in natural product biosynth-
esis, where the chloroperoxidase NapH1 carries out a stereoselective
chlorination-cyclization reaction with a known polyketide-terpe-
noid natural product.
’ REFERENCES
(1) Neumann, C. S.; Fujimori, D. G.; Walsh, C. T. Chem. Biol. 2008,
15, 99.
(2) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.; Garneau-Tsodikova,
S.; Walsh, C. T. Chem. Rev. 2006, 106, 3364.
(3) Winter, J. M.; Moore, B. S. J. Biol. Chem. 2009, 284, 18577.
(4) Gomi, S.; Ohuchi, S.; Sasaki, T.; Itoh, J.; Sezaki, M. J. Antibiot.
1987, 40, 740.
(5) Shomura, T.; Gomi, S.; Ito, M.; Yoshida, J.; Tanaka, E.; Amano,
S.; Watabe, H.; Ohuchi, S.; Itoh, J.; Sezaki, M.; Takebe, H.; Uotani, K.
J. Antibiot. 1987, 40, 732.
(6) Fukuda, D. S.; Mynderse, J. S.; Baker, P. J.; Berry, D. M.; Boeck,
L. D.; Yao, R. C.; Mertz, F. P.; Nakatsukasa, W. M.; Mabe, J.; Ott, J.;
Counter, F. T.; Ensminger, P. W.; Allen, N. E.; Alborn, W. E.; Hobbs,
J. N. J. Antibiot. 1990, 43, 623.
(7) Itoh, N.; Izumi, Y.; Yamada, H. J. Biol. Chem. 1987, 262, 11982.
(8) Rush, C.; Willetts, A.; Davies, G.; Dauter, Z.; Watson, H.;
Littlechild, J. FEBS Lett. 1995, 359, 244.
(9) Almeida, M.; Almeida, M. G.; Humanes, M.; Melo, R. A.; Silva,
J. A.; Frausto da Silva, J. J. R. Phycologia 1997, 36, 1.
(10) Almeida, M.; Humanes, M.; Melo, R.; Silva, J. A.; da Silva, J. J. R.
F.; Vilter, H.; Wever, R. Phytochemistry 1998, 48, 229.
(11) Hemrika, W.; Renirie, R.; Macedo-Ribeiro, S.; Messerschmidt,
A.; Wever, R. J. Biol. Chem. 1999, 274, 23820.
(12) Weyand, M.; Hecht, H. J.; Kiess, M.; Liaud, M. F.; Vilter, H.;
Schmburg, D. J. Mol. Biol. 1999, 293, 595.
(13) Littlechild, J.; Rodriguez, E. G.; Isupov, M. J. Inorg. Biochem.
2009, 103, 617.
(14) Butler, A.; Carter-Franklin, J. N. Nat. Prod. Rep. 2004, 21, 180.
(15) Carter-Franklin, J. N.; Butler, A. J. Am. Chem. Soc. 2004,
126, 15060.
(16) Carter-Franklin, J. N.; Parrish, J. D.; Tschirret-Guth, R. A.;
Little, R. D.; Butler, A. J. Am. Chem. Soc. 2003, 125, 3688.
(17) Martinez, J. S.; Carroll, G. L.; Tschirret-Guth, R. A.; Altenhoff,
G.; Little, R. D.; Butler, A. J. Am. Chem. Soc. 2001, 123, 3289.
(18) Tschirret-Guth, R. A.; Butler, A. J. Am. Chem. Soc. 1994,
116, 411.
(19) Winter, J. M.; Moffitt, M. C.; Zazopoulos, E.; McAlpine, J. B.;
Dorrestein, P. C.; Moore, B. S. J. Biol. Chem. 2007, 282, 16362.
(20) Soria-Mercado, I. E.; Prieto-Davo, A.; Jensen, P. R.; Fenical, W.
J. Nat. Prod. 2005, 68, 904.
’ ASSOCIATED CONTENT
S
Supporting Information. Figures S1-S7, experimental
b
methods, sequence alignment, HRMS data, NMR spectra of
SF2415B3. This material is available free of charge via the Internet
’ AUTHOR INFORMATION
(21) Winter, J. M.; Jansma, A. L.; Handel, T. M.; Moore, B. S. Angew.
Chem., Int. Ed. 2009, 48, 767–770.
(22) Jez, J. M.; Ferrer, J. L.; Bowman, M. E.; Dixon, R. A.; Noel, J. P.
Biochemistry 2000, 39, 890.
(23) Morris, D. R.; Hager, L. P. J. Biol. Chem. 1966, 241, 1763.
(24) Messerschmidt, A.; Wever, R. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 392.
Corresponding Author
Present Addresses
‡Faculty of Environmental Earth Science, Hokkaido University,
Sapporo, 060-0810, Japan.
(25) Isupov, M. N.; Dalby, A. R.; Brindley, A. A.; Izumi, Y.;
Murshudov, G. N.; Littlechild, J. A. J. Mol. Biol. 2000, 299, 1035.
(26) Feiters, M. C.; Leblanc, C.; Kupper, F. C.; Meyer-Klaucke, W.;
Michel, G.; Potin, P. J. Am. Chem. Soc. 2005, 127, 15340.
’ ACKNOWLEDGMENT
S. aculeolatus NRRL 18422 was provided by Drs. McAlpine and
Zhao (Thallion Pharmaceuticals, Canada), while the SF2415B3
standard was a kind gift from Dr. Ohyama (Meiji Seika Kaisha,
Ltd., Japan). We gratefully acknowledge Drs. Su and Mrse at the
4270
dx.doi.org/10.1021/ja201088k |J. Am. Chem. Soc. 2011, 133, 4268–4270