2 (a) G. W. Coates, P. D. Hustad and S. Reinartz, Angew. Chem.,
Int. Ed., 2002, 41, 2236–2257; (b) G. J. Domski, J. M. Rose,
G. W. Coates, A. D. Bolig and M. Brookhart, Prog. Polym. Sci.,
2007, 32, 30–92.
3 (a) D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman
and T. T. Wenzel, Science, 2006, 312, 714–719; (b) P. D. Hustad,
R. L. Kuhlman, D. J. Arriola, E. M. Carnahan and T. T. Wenzel,
Macromolecules, 2007, 40, 7061–7064; (c) P. D. Hustad,
R. L. Kuhlman, E. M. Carnahan, T. T. Wenzel and
D. J. Arriola, Macromolecules, 2008, 41, 4081–4089;
(d) W. Zhang and L. R. Sita, J. Am. Chem. Soc., 2008, 130,
442–443; (e) R. Kempe, Chem.–Eur. J., 2007, 13, 2764–2773.
4 (a) A. E. Cherian, J. M. Rose, E. B. Lobkovsky and G. W. Coates,
J. Am. Chem. Soc., 2005, 127, 13770–13771; (b) J. B. Edson,
Z. Wang, E. J. Kramer and G. W. Coates, J. Am. Chem. Soc.,
2008, 130, 4968–4977; (c) A. Hotta, E. Cochran, J. Ruokolainen,
V. Khanna, G. H. Fredrickson, E. J. Kramer, Y.-W. Shin,
F. Shimizu, A. E. Cherian, P. D. Hustad, J. M. Rose and
G. W. Coates, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
15327–15332; (d) M. B. Harney, Y. Zhang and L. R. Sita, Angew.
Chem., Int. Ed., 2006, 45, 2400–2404.
5 (a) T. R. Boussie, G. M. Diamond, C. Goh, K. A. Hall,
A. M. LaPointe, M. K. Leclerc, V. Murphy, J. A.
W. Shoemaker, H. Turner, R. K. Rosen, J. C. Stevens,
F. Alfano, V. Busico, R. Cipullo and G. Talarico, Angew. Chem.,
Int. Ed., 2006, 45, 3278–3283 and references therein; (b) R. D.
J. Froese, P. D. Hustad, R. L. Kuhlman and T. T. Wenzel, J. Am.
Chem. Soc., 2007, 129, 7831–7840; (c) C. Zuccaccia, A. Macchioni,
V. Busico, R. Cipullo, G. Talarico, F. Alfano, H. W. Boone,
K. A. Frazier, P. D. Hustad, J. C. Stevens, P. C. Vosejpka and
K. A. Abboud, J. Am. Chem. Soc., 2008, 130, 10354–10368.
6 G. J. Domski, E. B. Lobkovsky and G. W. Coates, Macromole-
cules, 2007, 40, 3510–3513.
Fig. 4 13C{1H} NMR spectrum (125 MHz, 1,1,2,2-C2D2Cl4, 135 1C)
of iPP produced by rac-2a,b/B(C6F5)3 at 20 1C.
abstracted by B(C6F5)3. The reaction between rac-2a,b and
B(C6F5)3 was monitored using 1H NMR spectroscopy. The
spectrum revealed that two of the four resonances correspond-
ing to Hf–CH3 groups had disappeared. The two remaining
Hf–CH3 resonances appeared at À0.25 and À0.44 ppm in a
70 : 30 ratio. Two broad, overlapping resonances appeared at
1.75 ppm which were assigned to [(C6F5)3BCH3]À. Importantly,
no resonance attributable to (C6F5)3B–CH(CNaphthyl)(Et) was
present. These observations suggest that rac-2a,b reacts with
B(C6F5)3 via methide abstraction to produce a diastereomeric
mixture of pyridylamidohafnium methyl cations.
7 G. W. Coates, Chem. Rev., 2000, 100, 1223–1252.
8 A. R. Morgan, M. Kloskowski, F. Kalischewski, A. H. Phillips
and J. L. Petersen, Organometallics, 2005, 24, 5383–5392.
9 S. Attar, J. H. Nelson, J. Fischer, A. de Cian, J.-P. Sutter and
M. Pfeffer, Organometallics, 1995, 14, 4559–4569.
10 For examples of olefin polymerization by neutral group IV metal
alkyl compounds see: (a) D. G. H. Ballard, E. Jones, A. J. P. Pioli,
P. A. Robinson and R. J. Wyatt, Brit. Pat. Appl. 40416 and 40417,
1969, 2000; (b) D. G. H. Ballard and P. W. van Lienden, Makro-
mol. Chem., 1972, 154, 177–190; (c) D. G. H. Ballard,
J. V. Dawkins, J. M. Key and P. W. van Lienden, Makromol.
Chem., 1973, 165, 173–192; (d) E. Giannini, U. Zucchini and
E. Albizzati, Polymer Lett., 1970, 8, 405–410; (e) G. J. Pindado,
S. J. Lancaster, M. Thornton-Pett and M. Bochmann, J. Am.
Chem. Soc., 1998, 120, 6816–6817; (f) L. Jia, E. Ding,
A. L. Rheingold and B. Rhatigan, Organometallics, 2000, 19,
963–965; (g) A. Pastor, A. F. Kiely, L. M. Henling, M. W. Day
and J. E. Bercaw, J. Organomet. Chem., 1997, 528, 65–75.
11 For an example of intramolecular olefin insertion into a Zr–alkyl
bond see: J. M. Davis, R. J. Whitby and A. Jaxa-Chamiec, Synlett,
1994, 110–111.
We set out to synthesize 1 and subsequently generate the
corresponding pyridylamidohafnium dimethyl cation via
methide abstraction. Unexpectedly, intramolecular 2,1-inser-
tion of the appended vinyl group into the Hf–CH3 bond
of 1 occurred, thereby furnishing rac-2a,b in a rare example
of olefin insertion into the Hf–C bond of
a neutral
hafnium–methyl complex. Upon activation with B(C6F5)3,
rac-2a,b formed an active polymerization catalyst that isose-
lectively polymerized propylene in a living fashion. The origin
of isoselectivity in these systems remains unclear; current
studies focus on modeling the chiral framework of the putative
active species. The catalyst derived from methide abstraction
of rac-2a,b represents a rare example of an olefin polymeriza-
tion catalyst supported by an sp3-C donor.
12 For an example of intramolecular olefin insertion into a Ti–vinyl
bond see: R. A. Himes, P. E. Fanwick and I. P. Rothwell, Chem.
Commun., 2003, 18–19.
13 For an example of intramolecular olefin insertion into a Zr–
benzyne see: J. H. Tidwell and S. L. Buchwald, J. Am. Chem.
Soc., 1994, 116, 11797–11810.
The authors acknowledge Mitsubishi Chemical Corpora-
tion for support.
14 G. J. Domski, PhD Thesis, Cornell University, 2008.
15 (a) V. Busico, R. Cipullo, N. Friederichs, S. Ronca, G. Talarico,
M. Togrou and B. Wang, Macromolecules, 2004, 37, 8201–8203;
(b) Y. Fukui and M. Murata, Macromol. Chem. Phys., 2001, 202,
1473–1477; (c) K. Nishii, T. Ikeda, M. Akita and T. Shiono,
J. Mol. Catal. A: Chem., 2005, 231, 241–246; (d) A. F. Mason
and G. W. Coates, J. Am. Chem. Soc., 2004, 126, 16326–16327.
Notes and references
1 (a) G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew.
Chem., Int. Ed., 1999, 38, 728–447; (b) V. C. Gibson and
S. K. Spitzmesser, Chem. Rev., 2003, 103, 283–316.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 6137–6139 | 6139