246 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 2
Schobert et al.
(7) Kamal, A.; Shankaraiah, N.; Prabhakar, S.; Reddy, C. R.; Markandeya,
N.; Reddy, K. L.; Devaiah, V. Solid-phase synthesis of new
pyrrolobenzodiazepine-chalcone conjugates: DNA-binding affnity and
anticancer activity. Bioorg. Med. Chem. Lett. 2008, 18, 2434-2439.
(8) Schobert, R.; Biersack, B. cis-Dichloroplatinum(II) complexes with
aminomethylnicotinate and -isonicotinate ligands. Inorg. Chim. Acta
2005, 358, 3369–3376.
(9) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A rapid
esterification by means of mixed anhydride and its application to large-
ring lactonization. Bull. Chem. Soc. Jpn. 1979, 52, 1989–1993.
(10) Schobert, R.; Biersack, B.; Dietrich, A.; Grotemeier, A.; Mu¨ller, T.;
Kalinowski, B.; Knauer, S.; Voigt, W.; Paschke, R. Monoterpenes as
drug shuttles: cytotoxic (6-aminomethylnicotinate) dichloridoplatinu-
m(II) complexes with potential to overcome cisplatin resistance.
J. Med. Chem. 2007, 50, 1288–1293.
with or without inhibitor Ac-DEVD-CHO added. Briefly, HL-60
cells were treated with test compound 1a or 6a for the indicated
periods of time, harvested, and then lysed with the buffer provided
in the kit (supplemented with 0.1% Triton X-100). The cleavage
of the substrate DEVD bonded to the chromophore p-nitroanilide
(pNA) was measured by reading the absorbance (at 405 nm
wavelength) of the samples (maintained at 37 °C) at 15 min
increments for 90 min. The rate of cleavage of pNA [(pmol/min)/
µg of protein] was calculated from the initial slope of the absorbance
vs time curves.
4. Tubulin Polymerization Assay. Analysis of tubulin polym-
erization was performed with a tubulin polymerization assay kit
(Cytoskeleton) according to the manufacturer’s instructions. The
assay is fluorescence-based, and tubulin polymerization was
monitored by measuring RFU (relative fluorescence units) on a
SpectraFluorPlus (Tecan, Switzerland) using the following filters:
excitation 360 nm, emission 465 nm.
(11) Schobert, R.; Bernhardt, G.; Biersack, B.; Bollwein, S.; Fallahi, M.;
Grotemeier, A.; Hammond, G. L. Steroid conjugates of dichloro(6-
aminomethylnicotinate)platinum(II): effects on DNA, sex hormone
binding globulin, the estrogen receptor, and various breast cancer cell
lines. ChemMedChem 2007, 2, 333–342.
(12) Coggiola, B.; Pagliai, F.; Allegrone, G.; Genazzani, A. A.; Tron, G. C.
Synthesis and biological activity of mustard derivatives of combret-
astatins. Bioorg. Med. Chem. Lett. 2005, 15, 3551–3554.
(13) Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S. A. Identification of
programmed cell death in situ via specific labeling of nuclear DNA
fragmentation. J. Cell Biol. 1992, 119 (3), 493–501.
(14) Psahoulia, F. H.; Drosopoulos, K. G.; Doubravska, L.; Andera, L.;
Pintzas, A. Quercetin enhances TRAIL-mediated apoptosis in colon
cancer cells by inducing the accumulation of death receptors in lipid
rafts. Mol. Cancer Ther. 2007, 6, 2591–2599.
Acknowledgment. This work was supported by a grant from
the Deutsche Forschungsgemeinschaft (Grant Scho 402/8-2).
We are indebted to Franziska Reipsch for technical assistance
and to Dr. Florenz Sasse from the Helmholtz Center for Infection
Research, Braunschweig (Germany), for additional tubulin
binding experiments.
Supporting Information Available: Purity data for new com-
pounds, spectroscopic data of compounds 2a, 3a, 4a, 5a, 6a,
syntheses and characterization of derivatives 2b, 3b, 4b, 4c, 5b,
5c, 6b, 6c, an experimental description of the TUNEL assay, and
various experiments on the interactions of 1a and 6 with DNA.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(15) Shankar, S.; Chen, Q.; Siddiqui, I.; Sarva, K.; Srivastava, R. K.
Sensitization of TRAIL-resistant LNCaP cells by resveratrol: molecular
mechanism and therapeutic potential. J. Mol. Signaling 2007, 2, 7.
(16) Shankar, S.; Chen, Q.; Sarva, K.; Siddiqui, I.; Srivastava, R. K.
Curcumin enhances the apoptosis-inducing potential of TRAIL in
prostate cancer cells: molecular mechanism of apoptosis, migration
and angiogenesis. J. Mol. Signaling 2007, 2, 10.
(17) Shin, S.; Sung, B. J.; Cho, Y. S.; Kim, H. J.; Ha, N. C.; Hwang, J. I.;
Chung, C. W.; Jung, Y. K.; Oh, B. H. An antiapoptotic protein human
survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 2001,
40, 1117–1123.
References
(18) Asselin, E.; Mills, G. B.; Tsang, B. K. XIAP regulates Akt activity
and caspase-3-dependent cleavage during cisplatin-induced apoptosis
in human ovarian epithelial cancer cells. Cancer Res. 2001, 61, 1862–
1868.
(19) Brinkmann, U.; Gallo, M.; Polymeropoulos, M. H.; Pastan, I. The
human CAS (cellular apoptosis susceptibility) gene mapping on
chromosome 20q13 is amplified in BT474 breast cancer cells and part
of aberrant chromosomes in breast and colon cancer cell lines. Genome
Res. 1996, 6, 187–194.
(20) Behrens, P.; Brinkmann, U.; Wellmann, A. CSE1L/CAS: its role in
proliferation and apoptosis. Apoptosis 2003, 8, 39–44.
(21) Papazisis, K. T.; Geromichalos, G. D.; Dimitriadis, K. A.; Kortsaris,
A. H. Optimization of the sulforhodamine B colorimetric assay.
J. Immunol. Methods 1997, 208, 151–158.
(22) Mu¨ller, T.; Voigt, W.; Simon, H.; Fru¨hauf, A.; Bulankin, A.; Grothey,
A.; Schmoll, H.-J. Failure of activation of caspase-9 induces a higher
threshold for apoptosis and cisplatin resistance in testicular cancer.
Cancer Res. 2003, 63, 513–521.
(23) Wagner, S.; Hafner, C; Allwardt, D; Jasinska, J.; Ferrone, S.; Zielinski,
C. C.; Scheiner, O.; Wiedermann, U.; Pehamberger, H.; Breitender,
H. Vaccination with a human high molecular weight melanoma-
associated antigen mimotope induces a humoral response inhibiting
melanoma cell growth in vitro. J. Immunol 2005, 174, 976–982.
(24) Laemmli, U. K. Cleavage of structural proteins during the assembly
of the head of bacteriophage T4. Nature 1970, 227, 680–685.
(1) Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani,
A. A. Medicinal chemistry of combretastatin A4: present and future
directions. J. Med. Chem. 2006, 49, 3033–3044.
(2) Ducki, S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Lawrence, N. J.;
McGown, A. T.; Rennison, D. Potent antimitotic and cell growth
inhibitory properties of substituted chalcones. Bioorg. Med. Chem.
Lett. 1998, 8, 1051–1056.
(3) Stoll, R.; Renner, C.; Hansen, S.; Palme, S.; Klein, C.; Belling, A.;
Zeslawski, W.; Kamionka, M.; Rehm, T.; Mu¨hlhahn, P.; Schumacher,
R.; Hesse, F.; Kaluza, B.; Voelter, W.; Engh, R. A.; Holak, T. A.
Chalcone derivatives antagonize interactions between the human
oncoprotein MDM2 and p53. Biochemistry 2001, 40, 336–344.
(4) Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M. L.; Piro, O. E.;
Castellano, E. E.; Vidal, A.; Azqueta, A.; Monge, A.; de Cerain, A. L.;
Sagrera, G.; Seoane, G.; Cerecetto, H.; Gonzalez, M. Synthetic
chalcones, flavanones, and flavones as antitumoral agents: biological
evaluation and structure-activity relationships. Bioorg. Med. Chem.
2007, 15, 3356–3367.
(5) Meng, C. Q.; Ni, L.; Worsencroft, K. J.; Ye, Z.; Weingarten, M. D.;
Simpson, J. E.; Skudlarek, J. W.; Marino, E. M.; Suen, K.-L.; Kunsch,
C.; Souder, A.; Howard, R. B.; Sundell, C. L.; Wasserman, M. A.;
Sikorski, J. A. Carboxylated, heteroaryl-substituted chalcones as
inhibitors of vascular cell adhesion molecule-1 expression for use in
chronic inflammatory diseases. J. Med. Chem. 2007, 50, 1304–1315.
(6) Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Natural and non-
natural prenylated chalcones: synthesis, cytotoxicity and anti-oxidative
activity. Bioorg. Med. Chem. 2008, 16, 4286–4293.
JM801001D