moderate to good yield upon 350 nm irradiation. The byproducts
of deprotection, however, contain a nitroso group and are not
always compatible with biological applications.2c,d The 6-bromo-
4-(1,2-dihydroxyethyl)-7-hydroxycoumarin-derived acetals of
aldehydes and ketones have good aqueous solubility and can
be cleaved under single (365 nm) or two photon (740 nm)
excitation conditions albeit in a moderate yield.10 5-Methoxy-
R,R-diphenylsalicylic alcohol readily forms acetals with alde-
hydes and ketones under mild conditions and releases substrates
in a good yield upon irradiation with λ > 280 nm.11 The
quantum efficiency of the photochemical cleavage of all these
acetals is rather low apparently due to the reversibility of the
formation of an intimate ion pair upon light-induced heterolysis
of a C-O bond.
Caging of Carbonyl Compounds as Photolabile
(2,5-Dihydroxyphenyl)ethylene Glycol Acetals
Alexey P. Kostikov, Natalia Malashikhina, and
Vladimir V. Popik*
Department of Chemistry, UniVersity of Georgia, Athens,
Georgia 30602
ReceiVed NoVember 25, 2008
We have recently reported a design of PPGs for alcohols and
other types of hydroxy groups that utilize the excited state
intramolecular proton transfer (ESIPT) in o-hydroxybenzyl
alcohol analogues.12 ESIPT-induced C-O bond cleavage pro-
duces neutral intermediates and, therefore, proceeds with good
quantum efficiency. The PPG for glycols based on this design
was also developed.13 Since deprotection of glycols involves
photochemical cleavage of acetals, we decided to explore the
applicability of photolabile acetals for the protection of ketones
and aldehydes.
Aldehydes and ketones caged as 4-(2,5-dihydroxyphenyl)-
1,3-dioxolanes are efficiently (Φ ) 0.1-0.2) released in a
good to excellent chemical yield upon irradiation with 300
nm light. Caged carbonyl compounds are prepared by their
acetalization with (2,5-dimethoxyphenyl)ethylene glycol fol-
lowed by oxidative demethylation to produce corresponding
(1,3-dioxolane-4-yl)-1,4-benzoquinones. The latter acetals are
photochemically inert but can be converted into photolabile
hydroquinones by mild reduction in situ.
Here we report that 300 nm irradiation of (2,5-dihydrox-
yphenyl)ethylene glycol acetals of aldehydes and ketones 1a-e
results in their efficient cleavage and regeneration of the
(4) (a) Kaplan, J. H.; Forbush, B.; Hoffman, J. F. Biochemistry 1978, 17,
1929. (b) Walker, J. W.; Reid, G. P.; McGray, J. A.; Trentham, D. R. J. Am.
Chem. Soc. 1988, 110, 7170. (c) Furuta, T.; Torigai, H.; Sugimoto, M.; Iwamura,
M. J. Org. Chem. 1995, 60, 3953. (d) Hagen, V.; Bendig, J.; Frings, S.; Eckardt,
T.; Helm, S.; Reuter, D.; Kaupp, U. B. Angew. Chem., Int. Ed. 2001, 40, 1045.
(e) Corrie, J. E. T.; Trentham, D. R. J. Chem. Soc., Perkin Trans. 1 1992, 2409.
(f) Givens, R. S.; Athey, P. S.; Kueper, L. W., III; Matuszewski, B.; Xue, J.
J. Am. Chem. Soc. 1992, 114, 8708. (g) Park, C.-H.; Givens, R. S. J. Am. Chem.
Soc. 1997, 119, 2453. (h) Kla´n, P.; Pelliccioli, A. P.; Pos|Aapil, T.; Wirz, J.
Photochem. Photobiol. Sci. 2002, 1, 920.
(5) (a) Patchornik, A.; Amit, B. J.; Woodward, R. B. J. Am. Chem. Soc.
1970, 92, 6333. (b) Cameron, J. F.; Frechet, J. M. J. J. Am. Chem. Soc. 1991,
113, 4303. (c) Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.;
Solas, D. Science 1991, 251, 767. (d) Chee, M.; Yang, R.; Hubbell, E.; Berno,
A.; Huang, X. C.; Stern, D.; Winkler, J.; Lockhart, D. J.; Morris, M. S.; Fodor,
S. P. A. Science 1996, 274, 610. (e) Barltrop, J. A.; Schofield, P. Tetrahedron
Lett. 1962, 3, 697. (f) Chamberlin, J. W. J. Org. Chem. 1966, 31, 1658. (g)
Cameron, J. F.; Wilson, C. G.; Frechet, J. M. J. J. Am. Chem. Soc. 1996, 118,
12925.
(6) (a) Zehavi, U.; Amit, B.; Patchornik, A. J. Org. Chem. 1972, 37, 2281.
(b) Ohtsuka, E.; Tanaka, T.; Tanaka, S.; Ikehara, M. J. Am. Chem. Soc. 1978,
100, 4580. (c) Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama, K.;
Pitsinos, E. N.; Saimoto, H.; Mizuno, Y.; Baldenius, K.-U.; Smith, A. L. J. Am.
Chem. Soc. 1993, 115, 7625. (d) Suzuki, A. S.; Watanabe, T.; Kawamoto, M.;
Nishiyama, K.; Yamashita, H.; Ishii, M.; Iwamura, M.; Furuta, T. Org. Lett.
2003, 5, 4867. (e) Misetic, A.; Boyd, M. K. Tetrahedron Lett. 1998, 39, 1653.
(f) Furuta, T.; Hirayama, Y.; Iwamura, M. Org. Lett. 2001, 3, 1809. (g) Pirrung,
M. C.; Bradley, J.-C. J. Org. Chem. 1995, 60, 1116.
(7) (a) McHale, W. A.; Kutateladze, A. G. J. Org. Chem. 1998, 63, 9924.
(b) Mitkin, O. D.; Kurchan, A. N.; Wan, Y.; Schiwal, B. F.; Kutateladze, A. G.
Org. Lett. 2001, 3, 1841. (c) Li, Z.; Kutateladze, A. G. J. Org. Chem. 2003, 68,
8336.
Photoremovable protecting groups (PPGs) have found numer-
ous applications in organic synthesis, biochemistry, and bio-
technology as they allow for the spatial and temporal control
of substrate release, while the only reagent required is light.1,2
The majority of photolabile groups are designed to protect
carboxylic acids,3 phosphates,4 amines,5 and alcohols.6 The
choice of PPGs for caging of a carbonyl group, on the other
hand, is rather limited. Thus, carbonyl compounds can be
released from their dithiane adducts by using PET from suitable
internal or external donors.7 Three types of photolabile acetals
also have been reported. 4-(o-Nitrophenyl)-8 and 4,5-bis(o-
nitrophenyl)-1,3-dioxolanes9 release carbonyl compounds in a
(1) (a) Greene, T. W.; Wuts, P. G. M. Greene′s ProtectiVe Groups in Organic
Synthesis, 4th ed; Wiley: Hoboken, NJ, 2007. (b) Kocienski, P. J. Protecting
Goups; Thieme: Stuttgart, Germany, 2005.
(2) (a) Pelliccioli, A. P.; Wirz, J. Photochem. Photobiol. Sci. 2002, 1, 441.
(b) Bochet, C. G. J. Chem. Soc., Perkin Trans. 1 2002, 125. (c) Morrison, H.
Biological Applications of Photochemical Switches; Wiley: New York, 1993.
(d) Goeldner, M.; Givens, R. Dynamic Studies in Biology: Wiley: Weinheim,
Germany, 2005. (e) Mayer, G.; Heckel, A. Angew. Chem., Int. Ed. 2006, 45,
4900.
(8) Gravel, D.; Herbert, J.; Thoraval, D. Can. J. Chem. 1983, 61, 400.
(9) Blanc, A.; Bochet, C. G. J. Org. Chem. 2003, 68, 1138.
(10) Lu, M.; Fedoryak, O. D.; Moister, B. R.; Dore, T. M. Org. Lett. 2003,
5, 2119.
(3) (a) Furuta, T.; Wang, S. S.-H.; Dantzker, J. L.; Dore, T. M.; Bybee, W. J.;
Callaway, E. M.; Denk, W.; Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 1999,
96, 1193. (b) Sheehan, J. C.; Wilson, R. M.; Oxford, A. W. J. Am. Chem. Soc.
1971, 93, 7222. (c) Kla´n, P.; Zabadal, M.; Heger, D. Org. Lett. 2000, 2, 1569.
(11) Wang, P.; Hu, H.; Wang, Y. Org. Lett. 2007, 9, 1533.
(12) (a) Kostikov, A. P.; Popik, V. V. J. Org. Chem. 2007, 72, 9190. (b)
Kulikov, A.; Arumugam, S.; Popik, V. V. J. Org. Chem. 2008, 73, 7611.
(13) Kostikov, A. P.; Popik, V. V. Org. Lett. 2008, 10, 5277.
1802 J. Org. Chem. 2009, 74, 1802–1804
10.1021/jo802612f CCC: $40.75 2009 American Chemical Society
Published on Web 01/15/2009