R. Gup, B. Kırkan / Spectrochimica Acta Part A 62 (2005) 1188–1195
1195
absorption bands around 1641–1667 cm−1 in the IR spec-
tra of the ligands indicates that they are in the keto tau-
tomeric form in the solid state. The other evidence of the
keto form of the ligands is the appearance of amide NH
[3] B. Singh, K.K. Narang, R. Srivastava, Synth. React. Inorg. Met.-Org.
Chem. 31 (2001) 1345.
[4] A. Sreekanth, U.L. Kala, C.R. Nayar, M.R.P. Kurup, Polyhedron 23
(2004) 41.
[5] M. Calinescu, A. Emandi, I. S¸erban, V. Pop, Synth. React. Inorg.
Met.-Org. Chem. 33 (2003) 1927.
[6] R.M. Issa, S.A. Abdel-Latif, H.A. Abdel-Salam, Synth. React. Inorg.
Met.-Org. Chem. 31 (2001) 95.
[7] P.B. Sreeja, M.R.P. Kurup, A. Kishare, C. Jasmin, Polyhedron 23
(2003) 575.
[8] E.W. Ainscough, A.M. Brodie, W.A. Denny, G.J. Finlay, S.A. Gothe,
J.D. Ranford, J. Inorg. Biochem. 77 (1999) 125.
[9] N. Nawar, M.A. Khattab, N.M. Hosny, Synth. React. Inorg. Met.-
Org. Chem. 29 (1999) 1365.
[10] Z.H. Chohan, Synth. React. Inorg. Met.-Org. Chem. 31 (2001)
1.
[11] K. Pihlaja, M.F. Simeonov, F. Fu¨lo¨p, J. Org. Chem. 62 (1997)
5080.
[12] D. Van Reyk, S. Sarel, N. Hunt, Biochem. Pharmacol. 60 (2000)
581.
[13] S.G. Komurcu, S. Rollas, M. Ulgen, J. Gorrod, Boll. Chim. Farm.
134 (1995) 375.
[14] F.V. Bagrov, T.V. Vasil’eva, Russ. J. Org. Chem. 38 (2002)
1364.
[15] P.E. Lee, C.T. Yong, D. Fon, J.J. Vittal, J.D. Ranford, Polyhedron
22 (2003) 2781.
[16] P.W. Sadler, J. Chem. Soc. A (1961) 957.
[17] L.L. Koh, O.L. Kon, Y.C. Loh, J.D. Ranford, A.L.C. Tan, Y.Y. Tjan,
J. Inorg. Biochem. 72 (1998) 155.
[18] K. Pihlaja, M.F. Simeonov, F. Fu¨lo¨p, J. Org. Chem. 62 (1997)
5080.
[19] A.M. Khambekar, A.D. Sawant, Indian J. Chem. 36 (1997) 459.
[20] J.J. Norman, R.M. Heggie, J.B. Larose, Can. J. Chem. 40 (1962)
1547.
[21] J.W. Godhes, W.A. Armstrong, Inorg. Chem. 13 (1992) 368.
[22] D. Maiti, H. Paul, N. Chanda, S. Chakrabort, B. Mondal, V.G.
Puranik, G.K. Lahiri, Polyhedron 23 (2004) 831.
[23] M.M. Rageh, Spectrochim. Acta 60A (2004) 1917.
[24] E. Prenesti, S. Berto, P.G. Daniele, Spectrochim. Acta 59A (2003)
201.
1
signals around 10.47–11.01 ppm in the H NMR spectra.
However, in the IR spectra of the complexes ν(C O), ν(C N)
and ν(N H) stretching vibrations disappears but two new
bands are observed at 1615–154 and ∼1150 cm−1 due to
>C N N N< and C O stretches, respectively, suggesting
that the coordination takes place in enol tautomeric form. Fur-
thermore, the observation of phenolic ν(O H) and ν(NH2)
stretching vibration in the IR spectra of the complexes is con-
cluded as non-involements of these groups in coordination.
The results of the varying pH and solvents effect on the
absorption ability of Schiff base and their complexes are also
discussed in this paper. In the basic solutions, Schiff base
derived from salicyoylhydrazine have a considerable red shift
while the acidic medium does not effect the absorption abil-
ities of these compounds. It is also observed in this study
that the absorption spectra of anthranoylhydrazone derivative
(L1−L3) are not effected by the pH change. The λmax of the
ligands are not considerably changed by varied solvent. In the
case of the electronic spectra of the complexes, CT bands are
observed around 350–385 nm except the nickel complexes of
L2. Both types of complexes [ML2] and [ML(phen)]Cl show
very close CT pattern.
References
[1] T.R. Rao, S. Shrestha, A. Prasad, K.K. Narang, Synth. React. Inorg.
Met.-Org. Chem. 32 (2002) 419.
[2] S. Naskar, S. Biswas, D. Mishra, B. Adhikary, L.R. Falvello, T.
Soler, C.H. Schwalbe, S.K. Chattopadhyay, Inorg. Chem. Acta 357
(2004) 4264.
[25] S. Pang, Y. Liang, Spectrochim. Acta 57A (2001) 435.