Organic Letters
Letter
(16) The reaction of alkynyl Grignard reagents with organic azides is
known to give triazoles; see: Krasinski, A.; Fokin, V. V.; Sharpless, K.
B. Org. Lett. 2004, 6, 1237−1240.
(17) (a) Lee, C. C.; Obafemi, C. A. Can. J. Chem. 1981, 59, 1636−
1640. (b) Lee, C. C.; Ko, E. C. F. Can. J. Chem. 1976, 54, 3041−3044.
(c) Jones, W. M.; Maness, D. D. J. Am. Chem. Soc. 1970, 92, 5457−
5464. (d) Jones, W. M.; Miller, F. W. J. Am. Chem. Soc. 1967, 89,
1960−1962.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(18) (a) Perrin, F.; Kiefer, G.; Jeanbourquin, L.; Racine, S.; Perrotta,
D.; Waser, J.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2015, 54,
13393−13396. (b) Kossler, D.; Perrin, F.; Suleymanov, A. A.; Kiefer,
G.; Scopelliti, R.; Severin, K.; Cramer, N. Angew. Chem., Int. Ed. 2017,
56, 11490−11493.
(19) For an overview about vinyl cation intermediates, see:
(a) Hanack, M.; Carnahan, E. J.; Krowczynski, A.; Schoberth, W.;
Subramanian, L. R.; Subramanian, K. J. Am. Chem. Soc. 1979, 101,
100−108. (b) Stang, P. J.; Rappoport, Z.; Hanack, M.; Subramanian, L.
R. Vinyl Cations; Academic Press: New York, 1979.
(20) (a) Allmendinger, T.; Fujimoto, R.; Gasparini, F.; Schilling, W.;
Satoh, Y. Chimia 2004, 58, 133−137. (b) Tsai, H.-J.; Lin, K.-W.; Ting,
T.-h.; Burton, D. J. Helv. Chim. Acta 1999, 82, 2231−2239.
(21) Jackman, L. M.; Lange, B. C. J. Am. Chem. Soc. 1981, 103,
4494−4499.
(22) Kumamoto, T.; Hosoi, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn.
1968, 41, 2742−2745.
(23) For selected examples, see: (a) Guan, Z.-H.; Huang, K.; Yu, S.;
Zhang, X. Org. Lett. 2009, 11, 481−483. (b) Han, J.; Jeon, M.; Pak, H.
K.; Rhee, Y. H.; Park, J. Adv. Synth. Catal. 2014, 356, 2769−2774.
(24) (a) Yuan, M.; Fang, Y.; Zhang, L.; Jin, X.; Tao, M.; Ye, Q.; Li,
R.; Li, J.; Zheng, H.; Gu, J. Chin. J. Chem. 2015, 33, 1119−1123.
(b) Zhou, Y.; Ye, F.; Wang, X.; Xu, S.; Zhang, Y.; Wang, J. J. Org.
Chem. 2015, 80, 6109−6118.
(25) The reaction between PhMgBr and 1-azido-4-chlorobutane,
followed by aqueous workup, led to the formation of linear
disubstituted triazene Ph−NN−NH−(CH2)4Cl.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work was supported by funding from the Ecole
■
Polytechnique Fed
́
er
́
ale de Lausanne (EPFL).
REFERENCES
■
(1) For recent reviews, see: (a) Dong, W.; Chen, Z.; Xu, J.; Miao, M.;
Ren, H. Synlett 2016, 27, 1318−1334. (b) Zhang, Y.; Cao, D.; Liu, W.;
Hu, H.; Zhang, X.; Liu, C. Curr. Org. Chem. 2015, 19, 151−178.
(c) Kolmel, D. K.; Jung, N.; Brase, S. Aust. J. Chem. 2014, 67, 328−
̈
̈
336. (d) Kimball, D. B.; Haley, M. M. Angew. Chem., Int. Ed. 2002, 41,
3338−3351.
(2) Brase, S. Acc. Chem. Res. 2004, 37, 805−816.
̈
(3) (a) Hansen, M. N.; Farjami, E.; Kristiansen, M.; Clima, L.;
Pedersen, S. U.; Daasbjerg, K.; Ferapontova, E. E.; Gothelf, K. V. J.
Org. Chem. 2010, 75, 2474−2481. (b) Lu, M.; Chen, B.; He, T.; Li, Y.;
Tour, J. M. Chem. Mater. 2007, 19, 4447−4453. (c) Hudson, J. L.; Jian,
H.; Leonard, A. D.; Stephenson, J. J.; Tour, J. M. Chem. Mater. 2006,
18, 2766−2770. (d) Chen, B.; Flatt, A. K.; Jian, H.; Hudson, J. L.;
Tour, J. M. Chem. Mater. 2005, 17, 4832−4836.
(4) For selected examples, see: (a) Dai, W.-C.; Wang, Z.-X. Org.
Chem. Front. 2017, 4, 1281−1288. (b) Li, W.; Wu, X.-F. Org. Biomol.
Chem. 2015, 13, 5090−5093. (c) Saeki, T.; Son, E.-C.; Tamao, K. Org.
Lett. 2004, 6, 617−619. (d) Sengupta, S.; Sadhukhan, S. K. Org. Synth.
2002, 79, 52.
(5) (a) Wang, D.; Cui, S. Tetrahedron 2016, 72, 2725−2730. (b) Xu,
L.; Yang, W.; Zhang, L.; Miao, M.; Yang, Z.; Xu, X.; Ren, H. J. Org.
Chem. 2014, 79, 9206−9221. (c) Wang, C.; Chen, H.; Wang, Z.;
Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2012, 51, 7242−7245.
(d) Voica, A.-F.; Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P.
S. Nat. Chem. 2012, 4, 629−635.
(6) (a) Zhang, Y.; Hu, H.; Liu, C.-J.; Cao, D.; Wang, B.; Sun, Y.;
Abdukader, A. Asian J. Org. Chem. 2017, 6, 102−107. (b) Cao, D.;
Zhang, Y.; Liu, C.; Wang, B.; Sun, Y.; Abdukadera, A.; Hu, H.; Liu, Q.
Org. Lett. 2016, 18, 2000−2003. (c) Liu, C.; Lv, J.; Luo, S. Z.; Cheng,
J.-P. Org. Lett. 2014, 16, 5458−5461.
(7) Dao, H. T.; Baran, P. S. Angew. Chem., Int. Ed. 2014, 53, 14382−
14386.
(8) (a) Sun, H.; Wang, C.; Yang, Y.-F.; Chen, P.; Wu, Y.-D.; Zhang,
X.; Huang, Y. J. Org. Chem. 2014, 79, 11863−11872. (b) Fang, Y.;
Wang, C.; Su, S.; Yu, H.; Huang, Y. Org. Biomol. Chem. 2014, 12,
1061−1071. (c) Wang, C.; Sun, H.; Fang, Y.; Huang, Y. Angew. Chem.,
Int. Ed. 2013, 52, 5795−5798. (d) Goeminne, A.; Scammells, P. J.;
Devine, S. M.; Flynn, B. L. Tetrahedron Lett. 2010, 51, 6882−6885.
(9) Zhou, J.; Yang, W.; Wang, B.; Ren, H. Angew. Chem., Int. Ed.
2012, 51, 12293−12297.
(10) (a) Sieh, D. H.; Wilbur, D. J.; Michejda, C. J. J. Am. Chem. Soc.
1980, 102, 3883−3887. (b) Sieh, D. H.; Michejda, C. J. J. Am. Chem.
Soc. 1981, 103, 442−445.
(11) Kiefer, G.; Riedel, T.; Dyson, P. J.; Scopelliti, R.; Severin, K.
Angew. Chem., Int. Ed. 2015, 54, 302−305.
(12) For a review about the utilization of nitrous oxide in synthetic
chemistry, see: Severin, K. Chem. Soc. Rev. 2015, 44, 6375−6386.
(13) Schmidt, B. F.; Snyder, E. J.; Carroll, R. M.; Farnsworth, D. W.;
Michejda, C. J.; Smith, R. H. J. Org. Chem. 1997, 62, 8660−8665.
(14) Smith, R. H.; Pruski, B.; Day, C. S.; Pfaltzgraff, T. D.; Michejda,
C. J. Tetrahedron Lett. 1992, 33, 4683−4686.
(15) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem., Int.
Ed. 2006, 45, 2958−2961.
D
Org. Lett. XXXX, XXX, XXX−XXX