Levenberg-Marquardt method. Using the calculated stability con-
stants, the program plots the predicted spectra of the component
species together with the observed and calculated absorption
versus guest concentration at a given wavelength, both of which
reveal the accuracy of the experimental data and the suitability
of the model. The program also gives the best-fit values of the
stability constants together with their errors. The parameters were
varied until the values for the stability constants converged.
2 H. E. Katz, J. Am. Chem. Soc., 1985, 107, 1420–1421; H. E. Katz,
Organometallics, 1987, 6, 1134–1136.
3 J. D. Wuest and B. Zacharie, Organometallics, 1985, 4, 410–411; K.
Tamao, T. Hayashi, Y. Ito and M. Shiro, Organometallics, 1992, 11,
2099–2114.
4 M. Newcomb, A. M. Madonik, M. T. Blanda and J. K. Judice,
Organometallics, 1987, 6, 145–150; M. Newcomb, J. H. Horner, M. T.
Blanda and P. J. Squattrito, J. Am. Chem. Soc., 1989, 111, 6294–6301.
5 A. L. Chistyakov, I. V. Stankevich, N. P. Gambaryan, Y. T. Struchkov,
A. I. Yanovsky, I. A. Tikhonova and V. B. Shur, J. Organomet. Chem.,
1996, 508, 271–273; V. B. Shur, I. A. Tikhonova, A. I. Yanovsky, Y. T.
Struchkov, P. V. Petrovskii, S. Y. Panov, G. G. Furin and M. E. Vol,’pin,
J. Organomet. Chem., 1991, 418, C29–C32; I. A. Tikhonova, F. M.
Dolgushin, K. I. Tugashov, O. G. Ellert, V. M. Novotortsev, G. G.
Furin, M. Y. Antipin and V. B. Shur, J. Organomet. Chem., 2004, 689,
82–87.
6 R. Martinez-Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419–
4476; P. D. Beer and E. J. Hayes, Coord. Chem. Rev., 2003, 240, 167–189;
C. Sukasi and T. Tuntulani, Chem. Soc. Rev., 2003, 32, 192–202.
7 M. J. Gunter, S. M. Farquhar and K. M. Mullen, New J. Chem., 2004,
28, 1443–1449; M. Takeuchi, T. Shioya and T. M. Swager, Angew.
Chem., Int. Ed., 2001, 40, 3372–3376; M. Dudicˇ, P. Lhota´k, I. Stibor,
K. Lang and P. Prosˇkova´, Org. Lett., 2003, 5, 149–152; P. K. Panda and
C.-H. Lee, J. Org. Chem., 2005, 70, 3148–3156; C. Bucher, C. H.
Devillers, J.-C. Moutet, G. Royal and E. Saint-Aman, New J. Chem.,
2004, 28, 1584–1589; S. D. Starnes, S. Arungundram and C. H.
Saunders, Tetrahedron Lett., 2002, 43, 7785–7788.
8 (a) P. D. Beer, M. G. D. Drew and R. Jagessar, J. Chem. Soc., Dalton
Trans., 1997, 881–886; (b) P. D. Beer, D. P. Cormode and J. J. Davis,
Chem. Commun., 2004, 414–415; (c) D. P. Cormode, S. S. Murray,
A. R. Cowley and P. D. Beer, Dalton Trans., 2006, 5135–5140; (d) D. P.
Cormode, J. J. Davis and P. D. Beer, J. Inorg. Organomet. Polym., 2008,
18, 32–40.
9 R. C. Jagessar, M. Shang, W. R. Scheidt and D. H. Burns, J. Am.
Chem. Soc., 1998, 120, 11684–11692; C. Lee, D. H. Lee and J.-I. Hong,
Tetrahedron Lett., 2001, 42, 8665–8668.
10 V. G. Gore and N. S. Narasimhan, J. Chem. Soc., Perkin Trans. 1, 1988,
481–483.
11 J. P. Collman, R. R. Gagne, C. A. Reed, T. R. Halbert, G. Long and
W. T. Robinson, J. Am. Chem. Soc., 1975, 97, 1424–1439.
12 J. S. Lindsey, J. Org. Chem., 1980, 45, 5215–5215.
13 B. Boitrel, V. Baveux-Chambenoˆıt and P. Richard, Helv. Chim. Acta,
2004, 87, 2447–2464; T. Imaoka, H. Horiguchi and K. Yamamoto,
J. Am. Chem. Soc., 2003, 125, 340–341; M. J. Crossley, P. J. Sintic,
R. Walton and J. R. Reimers, Org. Biomol. Chem., 2003, 1, 2777–2787;
M.-C. Wang, L.-C. Sue, B.-C. Liau, B.-T. Ko, S. Elango and J.-H. Chen,
Inorg. Chem., 2001, 40, 6064–6068.
14 J. Huet, A. Gaudemer, C. Boucly-Goester and P. Goucly, Inorg. Chem.,
1982, 21, 3413–3419.
15 A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour
and L. Korsakoff, J. Org. Chem., 1967, 32, 476–476; G. H. Barnett,
M. F. Hudson and K. M. Smith, J. Chem. Soc., Perkin Trans. 1, 1975,
1401–1403.
16 A. D. Adler, F. R. Longo, K. Kampas and J. Kim, J. Inorg. Nucl. Chem.,
1970, 32, 2443–2445; E. G. Azenha, A. C. Serra, M. Pineiro, M. M.
Pereira, J. S. de Melo, S. J. Formosinho and A. M. d’A. R. Gonsalves,
Chem. Phys., 2002, 280, 177–190; M. E. Nino, S. A. Giraldo and E. A.
Paez-Mozo, J. Mol. Catal., 2001, 175, 139–151; M. F. Hudson and
K. M. Smith, Tetrahedron, 1976, 32, 597–601; M. F. Hudson and K. M.
Smith, Tetrahedron Lett., 1974, 15, 2223–2226.
17 L. R. Milgrom, The Colours of Life, Oxford University Press, 1997;
M. Gouterman, The Porphyrins, ed. D. Dolphin, Academic Press, New
York, 1978, Vol. 3, Ch 1.
Luminescence anion titration protocol
In a typical experiment, aliquots of guest (1.5 ¥ 10-5 mol in
5 ml) were added to a 3 ml solution of the host (1 ¥ 10-5 M)
at 293 K. Twenty nine aliquots were added (15 ¥ 2 ml and 14 ¥
5 ml). Spectra were recorded and the data was analysed by the
ꢀ
C
computer program Specfit , in a method as described above.
X-Ray crystallography
Diffraction data were measured with MoKa radiation at 298 K
using the MARresearch Image Plate System. The crystal was
positioned at 70 mm from the Image Plate. The crystal diffracted
weakly and only data up to 2q of 45◦ were collected. A total of
95 frames were measured at 2◦ intervals with a counting time of
10 min to give 17241 reflections. Data analysis was carried out
with the XDS program32 to give 9051 independent reflections with
an R(int) of 0.0654. The structure was solved using direct methods
with the SHELXS-97 program.33 The non-hydrogen atoms were
refined with anisotropic thermal parameters. The hydrogen atoms
bonded to carbon were included in geometric positions and given
thermal parameters equivalent to 1.2 times those of the atom to
which they were attached. Four hydrogen atoms were located in a
difference Fourier map bound to the four nitrogen atoms of the
porphyrin core and these were refined with 50% occupancy. There
was one ethanol solvent molecule and three water molecules in
the asymmetric unit all refined with 50% occupancy. There were
appreciable voids in the unit cell but there were no significant
peaks and it can be assumed that they were occupied, if at all, by
disordered solvent at low occupancy. The hydrogen atoms on the
water molecules could not be located. The structure was refined
on F2 using SHELXL-9733 to give R1 0.0944 and wR2 0.2456 for
4906 reflections with I>2s(I).
Crystal Data for 1: C81 H72 N8 O14, M = 1381.47, monoclinic,
spacegroup P21/c, Z = 4, a = 12.727(15), b = 25.271(28), c =
◦
3
23.357(9) A, b = 94.49(1) , U = 7489(5) A , dcalc = 1.225 g cm-3.
˚
˚
The cif file for this structure may be found in the ESI.†
Acknowledgements
We thank the EPSRC for a studentship (DPC) and Dr Jason
Davis for use of his electrochemical equipment. We gratefully
acknowledge Dr Michael Lankshear and Dr Simon Bayly for their
critical reading of the manuscript.
18 K. M. Kadish and L. R. Shuie, Inorg. Chem., 1982, 21, 3623–
3630.
19 R. A. Binstead, A. D. Zuberbuhler and B. Jung, Specfit 3.0.30,
Spectrum Software Associates, 2002.
20 See, for example G. D. Dorough, J. R. Miller and F. M. Huennekens,
J. Am. Chem. Soc., 1951, 73, 4315–4320.
References
21 M. Nappa and J. S. Valentine, J. Am. Chem. Soc., 1978, 100, 5075–
5080; A. S. Hinman and B. J. Pavelich, J. Electroanal. Chem., 1989,
269, 53–61.
1 J. L. Sessler, P. A. Gale and W.-S. Cho, Anion Receptor Chemistry, RSC,
Cambridge, 2006; P. A. Gale and R. Quesada, Coord. Chem. Rev., 2006,
250, 3219–3244; K. Bowman-James, Acc. Chem. Res., 2005, 38, 671–
678; P. A. Gale, Coord. Chem. Rev., 2003, 240, 191–221; P. D. Beer and
P. A. Gale, Angew. Chem., Int. Ed., 2001, 40, 486–516.
22 T. Ozawa and A. Hanaki, Chem. Pharm. Bull., 1983, 31, 2110–
2113.
23 P. D. Beer, Adv. Inorg. Chem., 1992, 39, 79–157.
6740 | Dalton Trans., 2008, 6732–6741
This journal is
The Royal Society of Chemistry 2008
©