L. Pellizzaro et al. / Tetrahedron Letters 50 (2009) 101–103
103
11. (a) Ariza, X.; Costa, A. M.; Faja, M.; Pineda, O.; Vilarrasa, J. Org. Lett. 2000, 2,
2809–2811; (b) De Lucchi, O.; Cossu, S. Encyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons, Ltd: USA, 2001; (c) Cossu, S.; De Lucchi, O.; Fabris,
F.; Ballini, R.; Bosica, G. Synthesis 1996, 1481–1484.
Ph2OP
OR
OR
MOH
ROH
2
1
R = Et, 13a
R = Me, 13b
KOH (1M), EtOH 70%
NaOH (1M), EtOH 80%
KOH (1M), MeOH 85%
12. Back, T. G. Tetrahedron 2001, 57, 5263–5301.
13. Typical experimental procedure for the preparation of DPE acetals: To a solution of
diol 1 (749 mg, 2 mmol)4 in dry THF (20 mL) maintained at 0 °C under argon,
NaH (60% dispersion in oil, 200 mg, 2.5 equiv) was introduced. After 15 min
vigorous stirring of the obtained slurry, Bu4NBr (65 mg, 0.05 equiv) was added,
followed by a THF solution of diphenylphosphinoylethyne9 (566 mg, 2.5 mmol
in 10 mL). After stirring for 12 h at rt, the mixture was carefully treated with
brine (15 mL), then extracted with AcOEt (3 Â 10 mL). The combined organic
phase was dried over MgSO4, concentrated in vacuo and the residue was
purified by silica-gel column chromatography (petroleum ether/AcOEt 3:7).
Scheme 5. Retro-Michael transacetalation for deprotection.
went fast (20 min) removal of the 4,6-O-DPE acetal protection to-
gether with partial 2,3-de-O-benzylation: this observation denotes
a marked contrast with the behaviour of PSE acetals and is indica-
tive of a much less efficient stabilization of protonated forms by a
P@O bond.
In contrast, the behaviour of DPE acetals in strongly basic media
compares well with that of PSE acetals. For example, when treated
by LiAlH4 in THF,4a DPE acetals 2 and 6 smoothly release the corre-
sponding diols in nearly quantitative yield (Scheme 4).
Furthermore, cleavage of DPE acetals could also be performed
via base-catalyzed transacetalation using refluxing 1 M ethanol
or methanol solutions of NaOH or KOH. The saccharidic diols were
recovered in high yields, together with 2-(diphenylphosphi-
noyl)acetaldehyde dialkyl acetals 13, the expected side-product
of the deprotection process (Scheme 5).23
In summary, a new class of cyclic acetals bearing a phosphine
oxide in b-position has been introduced in glycochemistry.24 Those
DPE acetals were readily obtained in reasonable yields from diols
and inexpensive diphenylphosphinoylethyne under basic condi-
tions. Although they do not match the high degree of stability of
PSE acetals in acidic media, DPE acetals satisfactorily resist moder-
ate acidic conditions, thanks to a P@O bond stabilization of acti-
vated species. Finally, DPE acetals can undergo efficient cleavage
under basic or reductive conditions. Further chemical reactivity
features of carbohydrate-based DPE acetals are under current
investigation.
Selected data for acetal 2 (syrup, 1.06 g, 88% yield): [
NMR (250 MHz, CDCl3): d 2.68-2.89 (m, 2H, H-8a, H-8b), 3.30 (t, 1H, J3–4 = J4–5
a
]
D +189 (c 1.2, CHCl3); 1
H
=
9.2, H-4), 3.34 (s, 3H, OCH3), 3.39 (t, 1H, J5–6b = Jgem = 10.1, H-6b), 3.43 (dd, 1H,
J1–2 = 3.8, J2–3 = 9.2, H-2), 3.60 (m, 1H, H-5), 3.82 (t, 1H, Jvic = 9.2, H-3), 3.97 (dd,
1H, J5–6a = 4.6, Jgem = 10.1, H-6a), 4.50 (d, 1H, J1–2 = 3.8, H-1), 4.58 (s, 2H,
OCH2Ph), 4.59 and 4.76 (2d, AB system, 2H, Jgem = 12.0, OCH2Ph), 4.96 (bq, 1H,
J7–8 = 5.5, 2JH–P = 10.7, H-7), 7.3 and 7.4 (2m, 16H, H–Ar), 7.6–7.8 (m, 4H, ortho-
1
H–Ar PhPO). 13C NMR (62.5 MHz, CDCl3): d 35.9 (d, JC–P = 70.4, C-8), 55.4
(OMe), 61.9 (C-5), 68.6 (C-6), 73.8 and 75.0 (PhCH2O), 78.5 (C-3), 79.2 (C-2),
81.8 (C-4), 98.0 (C-7), 99.1 (C-1), 127.5–128.7 (CH-Ar), 130.9, 131.0 (2d, 3JC–P
=
4
9.6, CH-meta-PhPO), 131.7, 131.9 (2d, JC–P = 2.7, CH-para-PhPO), 133.0 (d,
1JC–P = 101.9, CIV–PhPO), 133.3 (d, 1JC–P = 102.7, CIV–PhPO), 138.1, 138.8 (2ÃCIV
–
Ar). HRMS calcd for C35H37O7P: 600.2277; found 600.2271.
14. Selected data for DPE acetal 6: [
a
]
+12 (c 2.1, CHCl3); 1H NMR (250 MHz,
D
CDCl3): d 1.27, 1.44 (2s, 6H, Me), 2.61–2.82 (m, 2H, H-7a, H-7b), 3.87 (dd, 1H,
J4–5b = 2.0, Jgem = 13.1, H-5b), 3.95 (m, 1H, H-4), 4.13 (br s, 1H, H-3), 4.15 (bd,
1H, H-5a), 4.19 (bd, H-2), 5.01 (bq, 1H, J6–7 = 5.2, 2JH–P = 10.7, H-6), 5.90 (d, 1H,
J1–2 = 3.7, H-1), 7.38–7.55 (m, 6H, H–Ar), 7.65–7.77 (m, 4H, ortho-H-Ar PhPO).
1
13C NMR (62.5 MHz, CDCl3): d 26.1, 26.6 (iPrd), 36.2 (d, JC–P = 71.6, C-7), 66.2
(C-5), 71.8 (C-4), 78.4 (C-3), 83.4 (C-2), 95.6 (C-1), 105.4 (C-6), 111.8 (CIV–iPrd),
2
3
128.4, 128.5 (2d, JC–P = 12.0, CH-ortho-PhPO), 130.8 (d, JC–P = 9.6, CH-meta-
4
1
PhPO), 131.7, 131.8 (2d, JC–P = 2.6, CH-para-PhPO), 132.8 (d, JC-P = 102.3, CIV
–
PhPO), 133.1 (d, 1JC–P = 102.6, CIV–PhPO). HRMS calcd for C22H25O6P: 416.1389;
found 416.1395.
15. (a) Hansen, K. C.; Wright, C. H.; Aguiar, A. M.; Morrow, C. J.; Turkel, R. M.;
Bhacca, N. S. J. Org. Chem. 1970, 35, 2820–2822; (b) Cates, L. A.; Jones, G. S., Jr.;
Good, D. J.; Tsai, H. Y. L.; Li, V. S.; Caron, N.; Tu, S. C.; Kimball, A. P. J. Med. Chem.
1980, 23, 300–304; (c) Okauchi, T.; Nagamori, H.; Kouno, R.; Ichikawa, J.;
Minami, T. Heterocycles 2000, 52, 1393–1398.
16. Schaumann, E.; Fittkau, S. Bull. Soc. Chim. Belg. 1985, 94, 463–474.
17. Selected data for the syrupy dithiolane 9c: 1H NMR (250 MHz, CDCl3): d 2.96 (dd,
2
2H, Jvic = 7.1, JH–P = 10.2, CH2–PO), 3.05–3.30 (m, 4H, CH2S), 4.83 (dd, 1H,
Jvic = 7.1, Jvic = 13.9, H-2), 7.4–7.6 (m, 6H, H–Ar), 7.70–7.83 (m, 4H, ortho-H–Ar
PhPO). 13C NMR (62.5 MHz, CDCl3): d 31.1 (CH2S), 39.8 (d, 1JC–P = 67.2, CH2–PO),
Acknowledgements
2
2
46.5 (d, JC–P = 3.2, C-2), 128.8 (d, JC–P = 11.8, CH-ortho-PhPO), 131.1 (d,
3JC–P = 9.3, CH–meta-PhPO), 132.1 (d, JC–P = 2.8, CH–para-PhPO), 132.5 (d,
4
We thank Sandrina Silva and Dr. Charlotte Moine (ICOA) for
helpful contribution and comments. This work was co-funded by
MIUR (Rome) within the national PRIN framework. We are also
grateful to EGIDE for support.
1JC–P = 99.2, CIV–PhPO). HRMS calcd for C16H17OPS2: 320.0458; found 320.0452.
18. Selected data for the syrupy oxathiolane 11a: 1H NMR (250 MHz, CDCl3): d 2.80
2
(dd, 1H, Jvic = 7.1, JH–P = 10.1, CHb–PO), 2.98–3.05 (m, 3H, H-4a, H-4b, CHa–
PO), 3.57–3.72 (m, 1H, H-5b), 4.25 (ddd, 1H, H-5a), 5.41 (dd, 1H, Jvic = 5.8,
Jvic = 12.5, H-2), 7.4–7.6 (m, 6H, H–Ar), 7.68–7.83 (m, 4H, ortho-H–Ar PhPO). 13
NMR (62.5 MHz, CDCl3): d 33.4 C-4, 37.9 (d, JC–P = 67.0, CH2–PO), 71.2 (C-5),
C
1
2
3
80.5 (C-2), 128.5 (2d, JC–P = 10.1, CH–ortho-PhPO), 130.9 (2d, JC–P = 9.0, CH–
meta-PhPO), 132.0 (2d, 4JC–P = 2.5, CH–para-PhPO). HRMS calcd for C16H17O2PS:
304.0687; found 304.0691.
References and notes
1. (a) Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 3rd ed.;
Wiley & Sons: New York, 1999; (b) Kocienski, P. J. Protecting Groups; Georg
Thieme Verlag: New York, 2004.
2. For reviews in glycochemistry, see: (a) Haines, A. H. Adv. Carbohydr. Chem.
Biochem. 1981, 39, 13–70; (b) Gelas, J. Adv. Carbohydr. Chem. Biochem. 1981, 39,
71–156.
3. (a) Hanessian, S. Methods Carbohydr. Chem. 1972, 6, 183–189; (b) Garegg, P. J.;
Hultberg, H. Carbohydr. Res. 1981, 93, C10–C12; (c) Umemura, K.; Matsuyama,
H.; Kobayashi, M.; Kamigata, N. Bull. Chem. Soc. Jpn. 1989, 62, 3026–3029; (d)
Pohl, N. L.; Kiessling, L. L. Tetrahedron Lett. 1997, 38, 6985–6988.
4. (a) Chéry, F.; Rollin, P.; De Lucchi, O.; Cossu, S. Synthesis 2001, 286–292; (b)
Chéry, F.; Pillard, C.; Tatibouët, A.; De Lucchi, O.; Rollin, P. Tetrahedron 2006, 62,
5141–5151.
19. Selected data for the syrupy oxathiane 11b: 1H NMR (250 MHz, CDCl3): d 1.53 bd,
1H, Jgem = 14.0, H-5b), 1.7–1.9 (m, 1H, H-5a), 2.44–2.67 (m, 2H, H-4b, CHb–PO),
2.76–3.04 (m, 2H, H-4a, CHa–PO), 3.41 (dt, 1H, H-6b), 3.82–3.93 (bd, 1H, H-6a),
2
5.16 dt, Jvic = 8.7, JH–P = 4.0, H-2), 7.32–7.50 (m, 6H, H–Ar), 7.63–7.76 (m, 4H,
ortho-H–Ar PhPO). 13C NMR (62.5 MHz, CDCl3): d 25.2 (C-5), 28.4 (C-4), 37.4 (d,
1JC–P = 68.9, CH2–PO), 69.9 (C-6), 77.3 (d, JC–P = 11.8, C-2), 128.4 (2d, JC–P
=
=
2
2
3
4
11.9, CH–ortho-PhPO), 130.7 (2d, JC–P = 9.7, CH–meta-PhPO), 131.8 (d, JC–P
1 1
2.8, CH–para-PhPO), 133.0 (d, JC–P = 101.6, CIV–PhPO), 133.2 (d, JC–P = 100.7,
CIV–PhPO). HRMS calcd for C17H19O2PS: 318.0843; found 318.0839.
20. Cabianca, E.; Tatibouët, A.; Chéry, F.; Pillard, C.; De Lucchi, O.; Rollin, P.
Tetrahedron Lett. 2003, 44, 5723–5725.
21. Christensen, J. E.; Goodman, L. Carbohydr. Res. 1968, 7, 510–512.
22. An initial mechanistic suggestion given to us by Professor E. Juaristi (Instituto
Politecnico Nacional, Mexico) was later supported by our preliminary ab initio
calculations.
5. Cabianca, E.; Tatibouët, A.; Fabris, F.; De Lucchi, O.; Rollin, P. Tetrahedron Lett.
2005, 46, 1035–1037.
6. (a) Chevalier-du Roizel, B.; Cabianca, E.; Tatibouët, A.; Rollin, P.; Sinaÿ, P.
Tetrahedron 2002, 58, 9579–9583; (b) Uttaro, J. P.; Uttaro, L.; Tatibouët, A.;
Rollin, P.; Mathé, C.; Périgaud, C. Tetrahedron Lett. 2007, 48, 3851–3854.
7. (a) Cabianca, E.; Chéry, F.; Rollin, P.; Tatibouët, A.; De Lucchi, O. Tetrahedron
Lett. 2002, 43, 585–587; (b) Cabianca, E.; Tatibouët, A.; Rollin, P. Pol. J. Chem.
2005, 79, 317–322; (c) Fernandes, A.; Dell’Olmo, M.; Tatibouët, A.; Imberty, A.;
Philouze, C.; Rollin, P. Tetrahedron Lett. 2008, 49, 3484–3488.
8. Corriu, R. J. P.; Guérin, C.; Henner, B. J. L.; Jolivet, A. J. Organomet. Chem. 1997,
530, 39–48.
23. Typical experimental procedure for the base-catalyzed cleavage of DPE acetals: A
sample (0.102 g, 0.17 mmol) of the DPE acetal 2 was added to a 1 M KOH
solution in ethanol (20 mL) and the mixture was refluxed for 12 h, then
concentrated under reduced pressure and partitioned between AcOEt (50 mL)
and brine (20 mL). The organic phase was dried over MgSO4, concentrated and
the residue purified by silica-gel column chromatography (petroleum ether/
AcOEt 1:1, then 3:7). After elution of the diethyl acetal side-product 13a, the
glycoside 1 was recovered (55 mg, 86% yield).
24. The diphenylphosphinoyl moiety was introduced via oxidation of a pyranose-
derived phosphine: (a) Li, C.; Bernet, B.; Vasella, A.; Broger, E. A.; Meili, A.
Carbohydr. Res. 1991, 216, 149–170; (b) Brown, M. A.; Cox, P. J. Organomet.
Chem. 1995, 498, 275–282.
9. Charrier, C.; Chodkiewicz, W.; Cadiot, P. Bull. Soc. Chim. Fr. 1966, 1002–1011.
10. (a) Märkl, G.; Merkl, B. Tetrahedron Lett. 1983, 24, 5865–5868; (b) Huang, X.;
Zhang, C.; Lu, X. Synthesis 1995, 769–771.