Based on the retrosynthetic strategy outlined (Figure 1),
our synthetic efforts toward PTX-4 (1) have resulted in the
Scheme 1. Synthesis of the E Ring Fragment 4
Figure 1. Retrosynthetic analysis of PTX-4 (1).
successful synthesis of the ABC rings7d 2 and the FG rings7r
3 prompting us to next examine methodology for construction
of the highly substituted E ring and the bicyclic acetal D
rings. We herein report our synthesis of the E ring fragment
4 of PTX-4 (1) and subsequent novel VO(acac)2 epoxide
induced tandem cyclization of a homoallylic alcohol to install
the bicyclic D ring acetal onto the E ring fragment. A simple
tetrahydrofuran C ring was used as a model for our ABC
tricyclic fragment. The highly functionalized tetracycle 5 is
constructed by epoxidation of homoallylic alcohol 6, which
in turn is assembled via the union of E ring aldehyde 4 with
sulfone 7 (Figure 2).
TPAP and NMO provided methyl ketone 11. Elongation of
the carbon skeleton via addition of a homoallyl Grignard
reagent prior to installation of the tertiary methyl group
proceeded with low stereoselectivity. Gratifyingly, changing
the order of introduction of the two alkyl groups afforded
some improvement in that addition of the Grignard reagent
derived from 4-bromo-1-butene to methyl ketone 11 favored
the desired tertiary alcohol 12 over the undesired alcohol
13 (12:13; 2.1:1).8
Subjecting the major alcohol 12 to iodoetherification9
readily provided the requisite trans-tetrahydrofuran 14 in
excellent yield with 6.1:1 trans/cis selectivity. Interestingly,
iodoetherification of the undesired alcohol 13 proceeded
indiscriminately, affording both cis and trans ethers 15 in
nearly equal amounts. Confirmation of the relative stereo-
chemistry in trans-tetrahydrofuran 14 was achieved using
(7) (a) Pihko, P. M.; Aho, J. E. Org. Lett. 2004, 6, 3849. (b) Bondar,
D.; Liu, J.; Muller, T.; Paquette, L. A. Org. Lett. 2005, 7, 1813. (c) Halim,
R.; Brimble, M. A.; Merten, J. Org. Lett. 2005, 7, 2659. (d) Halim, R.;
Brimble, M. A.; Merten, J. Org. Biomol. Chem. 2006, 4, 1387. (e) Vellucci,
D.; Rychnovsky, S. D. Org. Lett. 2007, 9, 711. (f) Lotesta, S. D.; Hou, Y.;
Williams, L. J. Org. Lett. 2007, 9, 869. (g) Amano, S.; Fujiwara, K.; Murai,
A. Synlett 1997, 1300. (h) Paquette, L. A.; Peng, X.; Bondar, D. Org. Lett.
2002, 4, 937. (i) Peng, X.; Bondar, D.; Paquette, L. A. Tetrahedron 2004,
60, 9589. (j) Fujiwara, K.; Kobayashi, M.; Yamamoto, F.; Aki, Y.;
Kawamura, M.; Awakura, D.; Amano, S.; Okano, A.; Murai, A.; Kawai,
H.; Suzuki, T. Tetrahedron Lett. 2005, 46, 5067. (k) O’Connor, P. D.;
Knight, C. K.; Friedrich, D.; Peng, X.; Paquette, L. A. J. Org. Chem. 2007,
72, 1747. (l) Awakura, D.; Fujiwara, K.; Murai, A. Synlett 2000, 1733. (m)
Aho, J. E.; Saloma¨ki, E.; Rissansen, K.; Pihko, P. M. Org. Lett. 2008, 10,
4179. (n) Fujiwara, K.; Aki, Y.; Yamamoto, F.; Kawamura, M.; Kobayashi,
M.; Okano, A.; Awakura, D.; Shiga, S.; Murai, A.; Kawai, H.; Suzuki, T.
Tetrahedron Lett. 2007, 48, 4523. (o) Kolakowski, R. V.; Williams, L. J.
Tetrahedron Lett. 2007, 48, 4761. (p) Micalizio, G. C.; Roush, W. R. Org.
Lett. 2001, 3, 1949. (q) Helmboldt, H.; Aho, J. E.; Pihko, P. M. Org. Lett.
2008, 10, 4183. (r) Heapy, A.; Wagner, T. M.; Brimble, M. A. Synlett 2007,
2359.
Figure 2. Synthetic strategy for the construction of tetracycle 5.
Our plans initially focused on the synthesis of the E ring
fragment (Scheme 1) using an iodoetherification to construct
the trans-trisubstituted tetrahydrofuran ring. Thus, our syn-
thesis of E ring aldehyde 4 started from Roche ester 8, which
was then protected, reduced, and substituted via a mesylate
to give iodide 9. Extension of the carbon chain via cyanide
displacement and subsequent DIBALH reduction afforded
aldehyde 10. Methylation of 10 followed by oxidation with
(8) Alcohols 12 and 13 were converted to tetrahydrofuran derivatives,
which were then subjected to NOE experiments.
(9) Rychnovsky, S. D.; Bartlett, P. A. J. Am. Chem. Soc. 1981, 103,
3963.
564
Org. Lett., Vol. 11, No. 3, 2009