D
Y. Mori et al.
Cluster
Synlett
generated from carbon dioxide using an organoaluminum
reagent, these coupling reactions can be regarded as formal
carbonyl-ene-type reactions via oxanickelacycle intermedi-
ates. It is considered that the activation of the simple
alkenes and carbon dioxide is the driving force behind this
carbonyl-ene-type reaction, which will be an important
synthetic tool for C–C bond formation.
(3) It has been reported carbonyl-ene reaction of disubstituted
alkenes with acetone; see: Jackson, A. C.; Goldman, B. E.; Snider,
B. B. J. Org. Chem. 1984, 49, 3988.
(4) Carbon Dioxide as a Chemical Feedstock; Aresta, M., Ed.; Wiley-
VCH: Weinheim, 2010.
(5) (a) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6,
5933. (b) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956.
(c) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
(d) Huguet, N.; Jevtovikj, I.; Gordillo, A.; Lejkwski, M. L.; Lindner,
R.; Bru, M.; Khalimon, A. Y.; Rominger, F.; Schunk, S. A.;
Hofmann, P.; Limbach, M. Chem. Eur. J. 2014, 20, 16858.
(e) Plessow, P. N.; Schafer, A.; Limbach, M.; Hofmann, P. Organo-
metallics 2014, 33, 3657.
(6) (a) Molla, R. A.; Iqubal, M. A.; Ghosh, K.; Islam, S. M. Green Chem.
2016, 18, 4649. (b) Tani, Y.; Kuga, K.; Fujihara, T.; Terao, J.; Tsuji,
Y. Chem. Commun. 2015, 51, 13020. (c) Yu, B.; Zhao, Y.; Zhang,
H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Chem. Commun. 2014, 50, 2330.
(7) (a) Modern Organonickel Chemistry; Tamaru, Y., Ed.; Wiley-VCH:
Weinheim, 2005. (b) Tasker, S. Z.; Standley, E. A.; Jamison, T. F.
Nature 2014, 509, 299. (c) Standley, E. A.; Tasker, S. Z.; Jensen, K.
L.; Jamison, T. F. Acc. Chem. Res. 2015, 48, 1503. (d) Kimura, M.;
Tamaru, Y. J. Top. Curr. Chem. 2007, 279, 173. (e) Montgomery, J.
Angew. Chem. Int. Ed. 2004, 43, 3890.
Funding Information
We gratefully acknowledge funding from the Grants-in-Aid for Scien-
tific Research (B) (26288052) from the Ministry of Education, Culture,
Sports and Technology (MEXT), Japan.
)(
Acknowledgment
We gratefully acknowledge funding from the Grants-in-Aid for Scien-
tific Research (B) (26288052) from the Ministry of Education, Culture,
Sports and Technology (MEXT), Japan.
(8) (a) Mori, Y.; Kawabata, T.; Onodera, G.; Kimura, M. Synthesis
2016, 48, 2385. (b) Mori, Y.; Onodera, G.; Kimura, M. Chem. Lett.
2014, 43, 97. (c) Mori, Y.; Mori, T.; Onodera, G.; Kimura, M. Syn-
thesis 2014, 46, 2287. (d) Mori, T.; Akioka, Y.; Onodera, G.;
Kimura, M. Molecules 2014, 19, 9288. (e) Nakamura, T.; Mori, T.;
Togawa, M.; Kimura, M. Heterocycles 2012, 84, 339. (f) Kimura,
M.; Togawa, M.; Tatsuyama, Y.; Matsufuji, K. Tetrahedron Lett.
2009, 50, 3982. (g) Kimura, M.; Tatsuyama, Y.; Kojima, K.;
Tamaru, Y. Org. Lett. 2007, 9, 1871. (h) Kimura, M.; Kojima, K.;
Tatsuyama, Y.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 6332.
(i) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. J. Am. Chem. Soc.
2005, 127, 201. (j) Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.;
Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 8559. (k) Kimura, M.;
Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu, M.; Matsumoto, S.;
Tamaru, Y. Angew. Chem. Int. Ed. 1999, 38, 397. (l) Kimura, M.;
Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998, 120,
4033.
(9) (a) Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 14194.
(b) Ho, C.-Y.; Ng, S.-S.; Jamison, T. F. J. Am. Chem. Soc. 2006, 128,
5362. (c) Ng, S.-S.; Ho, C.-Y.; Jamison, T. F. J. Am. Chem. Soc.
2006, 128, 11513.
(10) An excess amount of Me3Al is required for the coupling reaction
of allylbenzene and acetone. However, in the case of a catalytic
amount of Me3Al, the desired reaction did not proceed. It seems
that Me3Al serves as a promoter for regeneration of Ni(0) active
species as well as Lewis acid for activation of acetone.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
(1) (a) Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1969, 8, 556.
(b) Snider, B. B. Acc. Chem. Res. 1980, 13, 426. (c) Salomon, M. F.;
Pardo, M. F.; Salomon, R. G. J. Am. Chem. Soc. 1984, 106, 3797.
(d) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021.
(e) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325.
(f) Clarke, M. L.; France, M. B. Tetrahedron 2008, 64, 9003.
(2) (a) Salomon, M. F.; Pardo, S. N.; Salomon, R. G. J. Org. Chem.
1984, 49, 2446. (b) Nagai, T.; Kumadaki, I.; Miki, T.; Kobayashi,
Y.; Tomizawa, G. Chem. Pharm. Bull. 1986, 34, 1546. (c) Nagai, T.;
Ando, A.; Miki, T.; Kumadaki, I.; Shiro, M. Chem. Pharm. Bull.
1988, 36, 3237. (d) Nagai, T.; Ogawa, K.; Morita, M.; Koyama, M.;
Ando, A.; Miki, T.; Kumadai, I. Chem. Pharm. Bull. 1989, 37, 1751.
(e) Nagai, T.; Nishioka, G.; Koyama, M.; Ando, A.; Miki, T.;
Kumadai, I. Chem. Pharm. Bull. 1991, 39, 233. (f) Gill, G. B.; Idris,
M. S. H.; Kirollos, K. S. J. Chem. Soc., Perkin Trans. 1 1992, 1, 2355.
(g) Nagai, T.; Nishioka, G.; Koyama, M.; Ando, A.; Miki, T.;
Kumadai, I. Chem. Pharm. Bull. 1992, 40, 593. (h) Achmatowicz,
O.; Bialecka-Florjańczyk, E. Tetrahedron 1996, 52, 8827.
(i) Evans, D. A.; Tregay, S. W.; Burgey, C. S.; Paras, N. A.;
Vojkonsky, T. J. Am. Chem. Soc. 2000, 122, 7936. (j) Aikawa, K.;
Kainuma, S.; Hatano, M.; Mikami, K. Tetrahedron Lett. 2004, 45,
183. (k) Mikami, K.; Aikawa, K.; Kainuma, S.; Kawakami, Y.;
Saito, T.; Sayo, N.; Kumobayashi, H. Tetrahedron: Asymmetry
2004, 15, 3885. (l) Langneer, M.; Rémy, P.; Bolm, C. Synlett 2005,
781. (m) Doherty, S.; Knight, J. G.; Smyth, C. H.; Harrington, R.
W.; Clegg, W. J. Org. Chem. 2006, 71, 9751. (n) Doherty, S.;
Knight, J. G.; Smyth, C. H.; Harrington, R. W.; Clegg, W. Organo-
metallics 2007, 26, 5961. (o) Doherty, S.; Knight, J. G.; Smyth, C.
H.; Harrington, R. W.; Clegg, W. Organometallics 2007, 26, 6453.
(p) Zhao, J.-F.; Tjan, T.-B. W.; Tan, B.-H.; Loh, T.-P. Org. Lett. 2009,
11, 5714. (q) Zheng, K.; Yang, Y.; Zhao, J.; Yin, C.; Lin, L.; Liu, X.;
Feng, X. Chem. Eur. J. 2010, 16, 9969.
(11) (a) Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett.
1998, 39, 4543. (b) Sato, Y.; Saito, N.; Mori, M. J. Org. Chem.
2002, 67, 9310. (c) Moragas, T.; Cornella, J.; Martin, R. J. Am.
Chem. Soc. 2014, 136, 17702.
(12) (a) Dible, B. R.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 872.
(b) Novak, A.; Calhorda, M. J.; Costa, P. J.; Woodward, S. Eur. J.
Org. Chem. 2009, 898. (c) Lee, W.-C.; Wang, C.-H.; Lin, Y.-H.;
Shin, W.-C.; Ong, T.-G. Org. Lett. 2013, 15, 5358. (d) Bielinski, E.
A.; Dai, W.; Guard, L. M.; Hazari, N.; Takase, M. K. Organometal-
lics 2013, 32, 4025.
(13) Acetone would be readily produced from a mixture of carbon
dioxide and Me3Al. Thus the formed acetone in situ might be
subsequently consumed via Ni-catalyzed oxidative cyclization
with alkenes promoted by Me3Al. It has been reported that the
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E