very useful when the appropriate starting materials are
available. However, there exist limitations that make certain
classes of pyrroles difficult to prepare or inaccessible using
these methods.
Table 1. Preparation of 1-Nitro-1-cyclopropyl Ketones
Cyclopropanes have been shown to be useful synthetic
precursors in organic synthesis.10 Depending on the func-
tionalities present on the cyclopropane ring, fragmentation
of these three-membered carbocycles represents a useful
method for the construction of a wide variety of carbon
skeletons. We recently reported a cyclopropanation reaction
involving in situ generation of phenyliodonium ylides for
the preparation of nitro cyclopropanecarboxylates using
hypervalent iodine(III) reagents.11 Reduction of the nitro
group using Zn-HCl affords a structurally diverse series of
cyclopropane R-amino acids.12
To extend the synthetic utility of 1-nitro-cyclopropylcar-
bonyls further,13 a strategy to access dihydropyrroles14 and
pyrroles was envisaged. Herein, we describe the preparation
of these compounds from nitro- and cyano-containing doubly
activated cyclopropyl ketones.
Preparation of 1-nitro-cyclopropyl ketones began by cy-
clopropanation of alkene substrates either with R-nitro-R-
diazoketones15 or with phenyliodonium ylides derived from
R-nitroketones. Ylide intermediates are presumably generated
in situ upon treatment of R-nitroketones with PhI(OAc)2
(Table 1).
The chemical yields of the desired cyclopropanes were
similar in most cases using the two different cyclopropanation
protocols. However, when the alkene substrate is expensive
or lacks R-stabilization (i.e., 4-Ph-1-butene), cyclopropana-
tion with the diazo substrate gives higher chemical yields
of the desired cyclopropane.
yield of
E:Z
ratio
product
R
R1
methoda
6 (%)b
6a
6a
6b
6b
6c
6c
6d
6d
6e
6f
Me
Me
Ph
Ph
A
B
A
B
A
B
A
B
A
A
A
77
78:22
78:22
81:19
88:12
16:84
10:90
76:24
74:26
73:27
79:21
53:47
59c
74
n-propyl Ph
n-propyl Ph
62c
74
Ph
Ph
Ph
Ph
Ph
Ph
75
69
c-C3H5
c-C3H5
Me
73
4-F-Ph
1-naphthyl
phenethyl
63d
52d
36
Me
Me
6g
a Method A: 4 (1.0 M in CH2Cl2) was added dropwise to the alkene
(2-3 equiv) and [Rh(Oct)2]2 (0.5 mol %). Method B: 5, PhI(OAc)2 (1.1
equiv), alkene (5.0 equiv), and [Rh(Oct)2]2 (0.5 mol %) stirred at 40 °C for
3 h. b Isolated yields after column chromatography. c Stirred at room
temperature for 20 h. d Performed with 1.0 equiv of alkene.
R-cyanoketones are also viable substrates. Accordingly, a
variety of additives, including 4 Å MS, Al2O3, Na2CO3, and
MgO, were screened in the cyclopropanation reaction involv-
ing benzoylacetonitrile (8a) and PhI(OAc)2 as the iodine-
(III) source.18 The reaction was also performed in organic
solvents, solventless, and under aqueous reaction conditions
(Table 2). The optimal reaction conditions for the benzoyl-
acetonitrile (8a) involved use of Na2CO3 (2.3 equiv) and 4
Mu¨ller and Ghanem have recently extended the in situ
protocol to include Meldrum’s acid16 and dimethyl mal-
onate17 as substrates, and we now wish to report that
Table 2. Cyclopropanation of Alkenes with R-Cyanoketones
and R-Cyano-R-diazoketones
(5) For reviews, see: (a) Baumgarten, M.; Tyutyulkov, N. Chem. Eur.
J. 1998, 4, 987-989. (b) Deronzier, A.; Moutet, J.-C. Curr. Top.
Electrochem. 1994, 3, 159-200.
(6) Review: Pagani, G. A. Heterocycles 1994, 37, 2069-2086.
(7) See, for example: (a) Ono, N.; Muratani, E.; Fumoto, Y.; Ogawa,
T.; Tazima, K. J. Chem. Soc., Perkin Trans. 1 1998, 3819-3824. (b)
Crossley, M. J.; King, L. G.; Newsom, I. A.; Sheehan, C. S. J. Chem. Soc.,
Perkin Trans. 1 1996, 2675-2684.
(8) (a) Paal, C. Ber. 1885, 18, 367-371. (b) Knorr, L. Ber. 1885, 18,
299-311.
yield of 9 E:Z
(9) Hantzsch, A. Ber. 1890, 23, 1474-1483.
product (R)
methoda
additive
(%)b
ratio
(10) For reviews, see: (a) Danishefsky, S. Acc. Chem. Res. 1979, 12,
66-72. (b) Reissig, H.-U.; Zimmer, R. Chem. ReV. 2003, 103, 1151-1196.
(c) Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C. Chem. ReV. 1989,
89, 165-198.
(11) Wurz, R. P.; Charette, A. B. Org. Lett. 2003, 5, 2327-2329.
(12) Wurz, R. P.; Charette, A. B. J. Org. Chem. 2004, 69, 1262-
1269.
(13) Nitrocyclopropane carboxylates as amino acid equivalents: (a)
O’Bannon, P. E.; Dailey, W. P. J. Org. Chem. 1990, 55, 353-355. (b)
Vettiger, T.; Seebach, D. Liebigs Ann. Chem. 1990, 195-201. (c) Seebach,
D.; Ha¨ner, R.; Vettiger, T. HelV. Chim. Acta 1987, 70, 1507-1515.
(14) For an example of a related dihydropyrrole synthesis, see: (a)
Jacoby, D.; Celerier, J. P.; Haviari, G.; Petit, H.; Lhommet, G. Synthesis
1992, 884-887. (b) Celerier, J. P.; Haddad, M.; Jacoby, D.; Lhommet, G.
Tetrahedron Lett. 1987, 28, 6597-6600.
9a (Ph)
9a (Ph)
9a (Ph)
9a (Ph)
9b (Bn)
9b (Bn)
9c (4-MeO-Ph)
9c (4-MeO-Ph)
9d (styryl)
9d (styryl)
A
B
B
B
A
B
A
B
A
B
95
63c
88
52
83
64
97
72
96
67c
88:12
86:14
86:14
87:13
77:23
78:22
94:6
89:11
57:43
56:44
none
Na2CO3 + 4 Å MS
H2O
Na2CO3 + 4 Å MS
Na2CO3 + 4 Å MS
none
a Method A: 7 (1.0 M in CH2Cl2) was added dropwise to styrene (2.0
equiv) and [Rh(Oct)2]2 (0.5 mol %). Method B: 8, PhI(OAc)2 (1.1 equiv),
[Rh(Oct)2]2 (1.0 mol %), and styrene (5.0 equiv), and the additive was stirred
(15) (a) Charette, A. B.; Wurz, R. P.; Ollevier, T. J. Org. Chem. 2000,
65, 9252-9254. (b) Charette, A. B.; Wurz, R. P.; Ollevier, T. HelV. Chim.
Acta 2002, 85, 4468-4484.
(16) Mu¨ller, P.; Ghanem, A. Synlett 2003, 1830-1833.
(17) Mu¨ller, P.; Ghanem, A. Org. Lett. 2004, 6, 4347-4350.
b
in CH2Cl2 (1.0 M) for 18 h at room temperature. Isolated yields after
column chromatography. c Reaction performed without solvent.
2314
Org. Lett., Vol. 7, No. 12, 2005