Journal of the American Chemical Society
Communication
52, 13616. (d) Guo, C.; Sahoo, B.; Daniliuc, C. G.; Glorius, F. J. Am.
Chem. Soc. 2014, 136, 17402.
(7) (a) Maki, B. E.; Chan, A.; Scheidt, K. A. Synthesis 2008, 1306.
(b) Maki, B. E.; Patterson, E. V.; Cramer, C. J.; Scheidt, K. A. Org. Lett.
2009, 11, 3942.
affords acyl azolium II. Catalyst turnover can be enhanced by acyl
transfer catalyst DMAP, which forms pyridinium III and
regenerates the NHC catalyst. Finally, acylation of the alcohol
regenerates DMAP and furnishes chiral succinate 2.
This novel cooperative process is a new, metal-free route to
succinic esters and the strategy of deploying multiple catalysts in
unison expands the concepts and utility of organocatalysis.
Ultimately, this catalytic system delivers the first highly
enantioselective, high yielding β-protonation of β,β-disubstituted
enals, due in part to unique contributions of all three catalysts: the
NHC, HBD, and acyl transfer species. This system leverages
distinct reactivity modes modeled from different organocatalysis
strategies (nucleophilic catalysis + hydrogen bond donor
activation) in a synergistic manner to efficiently promote a
challenging bond-forming reaction. The efficient and operational
simplicity of utilizing distinct, compatible catalysts versus
complex, elaborated single structures with multiple activation
sites could lend itself to many catalytic systems in the future.
(8) C−H Activation; Yu, J.-Q., Shi, Z., Eds.; Springer Berlin Heidelberg:
Berlin, 2010; Vol. 292.
(9) (a) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am.
Chem. Soc. 1996, 118, 12854. (b) Mohr, J. T.; Hong, A. Y.; Stoltz, B. M.
Nat. Chem. 2009, 1, 359 and references cited therein. (c) Poisson, T.;
Kobayashi, S. In Stereoselective Synthesis of Drugs and Natural Products;
Andrushko, V., Andrushko, N., Eds.; John Wiley & Sons, Inc.: Hoboken,
NJ, 2013. (d) Oudeyer, S.; Brier
2014, 2014, 6103.
̀
e, J.-F.; Levacher, V. Eur. J. Org. Chem.
(10) For selected reviews, see: (a) Doyle, A. G.; Jacobsen, E. N. Chem.
Rev. 2007, 107, 5713. (b) Auvil, T. J.; Schafer, A. G.; Mattson, A. E. Eur. J.
Org. Chem. 2014, 2014, 2633. For examples of combining NHCs with
HBDs, see: (c) Brand, J. P.; Siles, J. I. O.; Waser, J. Synlett 2010, 2010,
881. (d) Jin, Z.; Xu, J.; Yang, S.; Song, B.-A.; Chi, Y. R. Angew. Chem., Int.
Ed. 2013, 52, 12354. (e) Nawaz, F.; Zaghouani, M.; Bonne, D.; Chuzel,
O.; Rodriguez, J.; Coquerel, Y. Eur. J. Org. Chem. 2013, 2013, 8253.
(f) Youn, S. W.; Song, H. S.; Park, J. H. Org. Lett. 2014, 16, 1028.
(11) For selected examples of asymmetric hydrogenation, see:
(a) Etayo, P.; Vidal-Ferran, A. Chem. Soc. Rev. 2013, 42, 728.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures, spectral data, and crystallographic
data. The Supporting Information is available free of charge on
(b) Bernasconi, M.; Muller, M.-A.; Pfaltz, A. Angew. Chem., Int. Ed.
̈
2014, 53, 5385. For a selected example of a chiral auxiliary, see:
(c) Evans, D. A.; Wu, L. D.; Wiener, J. J. M.; Johnson, J. S.; Ripin, D. H.
B.; Tedrow, J. S. J. Org. Chem. 1999, 64, 6411.
(12) (a) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107,
5606. (b) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465,
1027. (c) Bugaut, X.; Glorius, F. Chem. Soc. Rev. 2012, 41, 3511.
(13) (a) Yang, J. W.; Hechavarria Fonseca, M. T.; Vignola, N.; List, B.
Angew. Chem., Int. Ed. 2005, 44, 108. (b) Ouellet, S. G.; Walji, A. M.;
Macmillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327.
(14) (a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217.
(b) Connon, S. J. Synlett 2009, 2009, 354. (c) Schreiner, P. R.; Lippert,
K. M.; Hof, K.; Gerbig, D.; Ley, D.; Hausmann, H.; Guenther, S. Eur. J.
Org. Chem. 2012, 2012, 5919.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support was provided by the NIH NIGMS
(GM073072).
(15) (a) Xu, S.; Held, I.; Kempf, B.; Mayr, H.; Steglich, W.; Zipse, H.
Chem. − Eur. J. 2005, 11, 4751. (b) Muller, C. E.; Schreiner, P. R. Angew.
̈
Chem., Int. Ed. 2011, 50, 6012. (c) Klauber, E. G.; De, C. K.; Shah, T. K.;
Seidel, D. J. Am. Chem. Soc. 2010, 132, 13624. (d) Birrell, J. A.;
Desrosiers, J.-N.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 13872.
(16) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008,
130, 14416.
(17) All substrates were evaluated with the NHC-HBD cooperative
catalyst conditions. If the isolated yields were deemed lower than a
practical level of ∼60%, then 5 mol % DMAP was employed (yield and
er given in parentheses).
(18) The absolute configuration of 22 was established by X-ray
diffraction. The remainder products were assigned by analogy.
(19) The use of the Z-alkene isomer of 1 undergoes an intramolecular
cyclization to provide a substituted furanone (not shown; see
Supporting Information for details).
REFERENCES
■
(1) (a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: New York, 1999. (b) Shang, G.; Li, W.;
Zhang, X.; Ojima, I. Catalytic Asymmetric Synthesis; John Wiley & Sons:
New York, 2010.
(2) (a) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33,
302. (b) Berkessel, A.; Groger, H. Asymmetric Organocatalysis: From
Biomimetic Concepts to Applications in Asymmetric Synthesis; Blackwell
Science Publishers: Oxford, 2005. (c) Allen, A. E.; MacMillan, D. W. C.
Chem. Sci. 2012, 3, 633. (d) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012,
3, 53.
(3) (a) Phillips, E. M.; Chan, A.; Scheidt, K. A. Aldrichimica Acta 2009,
42, 55. (b) Campbell, C. D.; Ling, K. B.; Smith, A. D. N-Heterocyclic
Carbenes in Organocatalysis; Springer: Dordrecht, 2011; Vol. 32.
(c) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314.
(d) Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew.
Chem., Int. Ed. 2012, 51, 11686. (e) Hopkinson, M. N.; Richter, C.;
Schedler, M.; Glorius, F. Nature 2014, 510, 485.
(4) (a) Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nat.
Chem. 2010, 2, 766. (b) Zhao, X.; DiRocco, D. A.; Rovis, T. J. Am. Chem.
Soc. 2011, 133, 12466. (c) Dugal-Tessier, J.; O’Bryan, E. A.; Schroeder,
T. B. H.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., Int. Ed. 2012, 51,
4963. (d) Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810.
(5) For a recent review, see: Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C.
R.; Paul, R. R.; Jose, A.; Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336.
(6) For selected examples, see: (a) Nair, V.; Varghese, V.; Babu, B. P.;
Sinu, C. R.; Suresh, E. Org. Biomol. Chem. 2010, 8, 761. (b) White, N. A.;
DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 8504.
(c) McCusker, E. O. B.; Scheidt, K. A. Angew. Chem., Int. Ed. 2013,
(20) Enantioselective Synthesis of β-Amino Acids, 2nd ed.; Blackwell
Science Publishers: Oxford, 2005.
(21) Arason, K. M.; Bergmeier, S. C. Org. Prep. Proced. Int. 2002, 34,
337.
(22) A full analysis of this result is currently underway.
(23) The propensity of ureas and squaramides to form insoluble
aggregates (vs more soluble thiourea variants) prevented the
observation of the analogous interactions under similar, relevant
conditions. Despite those limitations, all of the HBDs most likely
share similar function in our catalyst system, as evidenced by their
advantageous contribution to enantioselectivity (vide supra, Table 1).
(24) (a) Amendola, V.; Fabbrizzi, L.; Mosca, L. Chem. Soc. Rev. 2010,
39, 3889. (b) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D.
Adv. Synth. Catal. 2015, 357, 253.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX