Gramicidin S Analogues
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 3 673
(10) Katsu, T.; Kobayashi, H.; Fujita, Y. Mode of action of gramicidin S
on Escherichia coli membrane. Biochim. Biophys. Acta 1986, 860,
608–619.
(11) Afonin, S.; Glaser, R. W.; Berditchevskaia, M.; Wadhwani, P.; Guhrs,
K. H.; Mollmann, U.; Perner, A.; Ulrich, A. S. 4-Fluorophenylglycine
as a label for 19F NMR structure analysis of membrane-associated
peptides. ChemBioChem 2003, 4, 1151–1163.
(31) Xiao, J.; Weisblum, B.; Wipf, P. Trisubstituted (E)-alkene dipeptide
isosteres as beta-turn promoters in the gramicidin S cyclodecapeptide
scaffold. Org. Lett. 2006, 8, 4731–4734.
(32) Grotenbreg, G. M.; Spalburg, E.; de Neeling, A. J.; van der Marel,
G. A.; Overkleeft, H. S.; van Boom, J. H.; Overhand, M. Synthesis
and biological evaluation of novel turn-modified gramicidin S
analogues. Bioorg. Med. Chem. 2003, 11, 2835–2841.
(12) Arai, T.; Imachi, T.; Kato, T.; Ogawa, H. I.; Fujimoto, T.; Nishino,
N. Synthesis of [hexafluorovalyl1,1′]gramicidin S. Bull. Chem. Soc.
Jpn. 1996, 69, 1383–1389.
(13) Waki, M.; Abe, O.; Okawa, R.; Kato, T.; Makisumi, S.; Izumiya, N.
Studies of peptide antibiotics. XII. Syntheses of [2,2′-R,γ-diaminobu-
tyric acid] and [2,2′-lysine]-gramicidin S. Bull. Chem. Soc. Jpn. 1967,
40, 2904–2909.
(14) Aimoto, S. The synthesis of a heavy-atom derivative of gramicidin S
(GS), [D-Phe(4-Br) 4,4′]-GS, by a novel method. Bull. Chem. Soc. Jpn.
1988, 61, 2220–2222.
(15) Andreu, D.; Ruiz, S.; Carren˜o, C.; Alsina, J.; Albericio, F.; Jime´nez,
M. A.; de la Figuera, N.; Herranz, R.; Garc´ıa-Lo´pez, M. T.; Gonza´lez-
Mun˜iz, R. IBTM-containing gramicidin S analogues: Evidence for
IBTM as a suitable type II′ ꢀ-turn mimetic. J. Am. Chem. Soc. 1997,
119, 10579–10586.
(33) Shimohigashi, Y.; Kodama, H.; Imazu, S.; Horimoto, H.; Sakaguchi,
K.; Waki, M.; Uchida, H.; Kondo, M.; Kato, T.; Izumiya, N. [4,4′-
(Z)-dehydrophenylalanine]gramicidin S with stabilized bioactive con-
formation and strong antimicrobial activity. FEBS Lett. 1987, 222,
251–255.
(34) Royo, S.; Jime´nez, A. I.; Cativiela, C. Synthesis of enantiomerically
pure ꢀ,ꢀ-diphenylalanine (Dip) and fluorenylglycine (Flg). Tetrahe-
dron: Asymmetry 2006, 17, 2393–2400.
(35) Kitagawa, T.; Arita, J.; Nogahata, A. Convenient one-pot method for
formylation of amines and alcohols using formic acid and 1,1′-
oxalyldiimidazole. Chem. Pharm. Bull. (Tokyo) 1994, 42, 1655–1657.
(36) Schubert, M.; Labudde, D.; Oschkinat, H.; Schmieder, P. A software
tool for the prediction of Xaa-Pro peptide bond conformations in
proteins based on 13C chemical shift statistics. J. Biomol. NMR 2002,
24, 149–154.
(37) Santiveri, C. M.; Rico, M.; Jime´nez, M. A. 13CR and 13Cꢀ chemical
shifts as a tool to delineate ꢀ-hairpin structures in peptides. J. Biomol.
NMR 2001, 19, 331–345.
(38) Wishart, D. S.; Sykes, B. D.; Richards, F. M. Relationship between
nuclear magnetic resonance chemical shift and protein secondary
structure. J. Mol. Biol. 1991, 222, 311–333.
(16) Grotenbreg, G. M.; Buizert, A. E.; Llamas-Saiz, A. L.; Spalburg, E.;
van Hooft, P. A.; de Neeling, A. J.; Noort, D.; van Raaij, M. J.; van
der Marel, G. A.; Overkleeft, H. S.; Overhand, M. ꢀ-Turn modified
gramicidin S analogues containing arylated sugar amino acids display
antimicrobial and hemolytic activity comparable to the natural product.
J. Am. Chem. Soc. 2006, 128, 7559–7565.
(17) Kawai, M.; Yamamura, H.; Tanaka, R.; Umemoto, H.; Ohmizo, C.;
Higuchi, S.; Katsu, T. Proline residue-modified polycationic analogs
of gramicidin S with high antibacterial activity against both Gram-
positive and Gram-negative bacteria and low hemolytic activity. J.
Pept. Res. 2005, 65, 98–104.
(18) Lee, D. L.; Hodges, R. S. Structure-activity relationships of de novo
designed cyclic antimicrobial peptides based on gramicidin S. Biopoly-
mers 2003, 71, 28–48.
(19) Ripka, W. C.; Delucca, G. V.; Bach, A. C.; Pottorf, R. S.; Blaney,
J. M. Protein ꢀ-turn mimetics II: design, synthesis and evaluation in
the cyclic peptide gramicidin S. Tetrahedron 1993, 49, 3609–3628.
(20) Sato, K.; Kato, R.; Nagai, U. Studies on ꢀ-turn of peptides. XII.
Synthetic conformation of weak activity of [D-Pro5,5′]-gramicidin S
predicted from ꢀ-turn preference of its partial sequence. Bull. Chem.
Soc. Jpn. 1986, 59, 535–538.
(21) Tamaki, M.; Okitsu, T.; Araki, M.; Sakamoto, H.; Takimoto, M.;
Muramatsu, I. Synthesis and properties of gramicidin S analogs
containing Pro-D-Phe sequence in place of D-Phe-Pro sequence in the
ꢀ-turn part of the antibiotic. Bull. Chem. Soc. Jpn. 1985, 58, 531–
535.
(39) Santiveri, C. M.; Rico, M.; Jime´nez, M. A. Position effect of cross-
strand side chain interactions on beta-hairpin formation. Protein Sci.
2000, 9, 2151–2160.
(40) Wishart, D. S.; Bigam, C. G.; Holm, A.; Hodges, R. S.; Sykes, B. D.
1H, 13C, and 15N random coil NMR chemical shifts of the common
amino acids. I. Investigations of nearest-neighbor effects. J. Biomol.
NMR 1995, 5, 67–81.
(41) Saugar, J. M.; Rodr´ıguez-Herna´ndez, M. J.; de la Torre, B. G.; Pacho´n-
Iba´n˜ez, M. E.; Ferna´ndez-Reyes, M.; Andreu, D.; Pacho´n, J.; Rivas,
L. Activity of cecropin A-melittin hybrid peptides against colistin-
resistant clinical strains of Acinetobacter baumannii: molecular basis
for the differential mechanisms of action. Antimicrob. Agents Chemoth-
er. 2006, 50, 1251–1256.
(42) Kondejewski, L. H.; Lee, D. L.; Jelokhani-Niaraki, M.; Farmer, S. W.;
Hancock, R. E. W.; Hodges, R. S. Optimization of microbial specificity
in cyclic peptides by modulation of hydrophobicity within a defined
structural framework. J. Biomol. Chem. 2002, 1, 67–74.
(43) McInnes, C.; Kondejewski, L. H.; Hodges, R. S.; Sykes, B. D.
Development of the structural basis for antimicrobial and hemolytic
activities of peptides based on gramicidin S and design of novel
analogs using NMR spectroscopy. J. Biol. Chem. 2000, 275, 14287–
14294.
(22) Wishart, D. S.; Kondejewski, L. H.; Semchuk, P. D.; Sykes, B. D.;
Hodges, R. S. A method for the facile solid-phase synthesis of
gramicidin S and its analogs. Lett. Pept. Sci. 1996, 3, 53–60.
(23) Yamada, K.; Shinoda, S. S.; Oku, H.; Komagoe, K.; Katsu, T.; Katakai,
R. Synthesis of low-hemolytic antimicrobial dehydropeptides based
on gramicidin S. J. Med. Chem. 2006, 49, 7592–7595.
(44) Bach, A. C.; Markwalder, J. A.; Ripka, W. C. Synthesis and NMR
conformational analysis of a ꢀ-turn mimic incorporated into gramicidin
SsA general approach to evaluate ꢀ-turn peptidomimetics. Int. J. Pept.
Protein Res. 1991, 38, 314–323.
(45) Estiarte, M. A.; Rubiralta, M.; D´ıez, A.; Thormann, M.; Giralt, E.
Oxazolopiperidin-2-ones as type II′ ꢀ-turn mimetics: synthesis and
conformational analysis. J. Org. Chem. 2000, 65, 6992–6999.
(46) Gibbs, A. C.; Bjorndahl, T. C.; Hodges, R. S.; Wishart, D. S. Probing
the structural determinants of type II′ ꢀ-turn formation in peptides
and proteins. J. Am. Chem. Soc. 2002, 124, 1203–1213.
(47) Matsuura, S.; Waki, M.; Izumiya, N. Studies of peptide antibiotics.
Bull. Chem. Soc. Jpn. 1972, 45, 863–866.
(48) Higashijima, T.; Miyazawa, T.; Kawai, M.; Nagai, U. Gramicidin S
analogs with a D-Ala, Gly, or L-Ala residue in place of the D-Phe
residue: molecular conformations and interactions with phospholipid
membrane. Biopolymers 1986, 25, 2295–2307.
(49) Aarstad, K.; Zimmer, T. L.; Laland, S. G. Replacement of phenyla-
lanine in gramicidin S by other amino acids. FEBS Lett. 1979, 103,
118–121.
(50) Ando, S.; Aoyagi, H.; Waki, M.; Kato, T.; Izumiya, N. Studies of
peptide antibiotics. XLIII. Syntheses of gramicidin S analogs contain-
ing D-serine or dehydroalanine in place of D-phenylalanine and
asymmetric hydrogenation of the dehydroalanine residue. Int. J. Pept.
Protein Res. 1983, 21, 313–321.
(51) Wu, M.; Maier, E.; Benz, R.; Hancock, R. E. Mechanism of interaction
of different classes of cationic antimicrobial peptides with planar
bilayers and with the cytoplasmic membrane of Escherichia coli.
Biochemistry 1999, 38, 7235–7242.
(52) Lee, D. L.; Powers, J. P.; Pflegerl, K.; Vasil, M. L.; Hancock, R. E.;
Hodges, R. S. Effects of single D-amino acid substitutions on disruption
of beta-sheet structure and hydrophobicity in cyclic 14-residue
antimicrobial peptide analogs related to gramicidin S. J. Pept. Res.
2004, 63, 69–84.
(24) Jelokhani-Niaraki, M.; Kondejewski, L. H.; Farmer, S. W.; Hancock,
R. E.; Kay, C. M.; Hodges, R. S. Diastereoisomeric analogues of
gramicidin S: structure, biological activity and interaction with lipid
bilayers. Biochem. J. 2000, 349, 747–755.
(25) Kondejewski, L. H.; Jelokhani-Niaraki, M.; Farmer, S. W.; Lix, B.;
Kay, C. M.; Sykes, B. D.; Hancock, R. E.; Hodges, R. S. Dissociation
of antimicrobial and hemolytic activities in cyclic peptide diastereomers
by systematic alterations in amphipathicity. J. Biol. Chem. 1999, 274,
13181–13192.
(26) Abraham, T.; Marwaha, S.; Kobewka, D. M.; Lewis, R. N.; Prenner,
E. J.; Hodges, R. S.; McElhaney, R. N. The relationship between the
binding to and permeabilization of phospholipid bilayer membranes
by GS14dK4, a designed analog of the antimicrobial peptide grami-
cidin S. Biochim. Biophys. Acta 2007, 1768, 2089–2098.
(27) Abe, O.; Izumiya, N. Studies of peptide antibiotics. Analogs of
gramicidin S containing glycine or alanine in place of leucine. Bull.
Chem. Soc. Jpn. 1970, 43, 1202–1207.
(28) Prenner, E. J.; Lewis, R. N.; Kondejewski, L. H.; Hodges, R. S.;
McElhaney, R. N. Differential scanning calorimetric study of the effect
of the antimicrobial peptide gramicidin S on the thermotropic phase
behavior of phosphatidylcholine, phosphatidylethanolamine and phos-
phatidylglycerol lipid bilayer membranes. Biochim. Biophys. Acta
1999, 1417, 211–223.
(29) Graciani, N. R.; Tsang, K. Y.; McCutchen, S. L.; Kelly, J. W. Amino
acids that specify structure through hydrophobic clustering and
histidine-aromatic interactions lead to biologically active peptidomi-
metics. Bioorg. Med. Chem. 1994, 2, 999–1006.
(30) Kee, K. S.; Jois, S. D. Design of ꢀ-turn based therapeutic agents. Curr.
Pharm. Des. 2003, 9, 1209–1224.