Organometallics 2009, 28, 925–928
925
A Simple Route to Keto-Substituted (η5-Cyclohexadienyl)Mn(CO)3
Complexes Using Organomanganese Transmetalation: Structural
and Theoretical Characterizations
Antoine Eloi,† Franc¸oise Rose-Munch,*,† Eric Rose,*,† Murielle Chavarot-Kerlidou,† and
He´le`ne Ge´rard‡
UPMC UniV Paris 06, CNRS UMR 7611, Laboratoire de Chimie Organique, Tour 44, 1er Etage,
Case 181, 4 place Jussieu, 75252 Paris, France, and UPMC UniV Paris 06, CNRS UMR 7616,
Laboratoire de Chimie The´orique, 4 place Jussieu, 75252 Paris, France
ReceiVed September 16, 2008
Scheme 1. Reactivity Features of (η5-Cyclohexadienyl)Mn(Co)3
Summary: Efficient synthesis of keto-substituted (η5-cyclohexa-
dienyl)Mn(CO)3 complexes is achieVed by organomanganese
transmetalation catalyzed by Fe(acac)3. Density functional
theory (DFT) calculations highlight the influence of the keto
group position on the strength of conjugation between the RCO
function and the cyclohexadienyl ring and shed light on the
regioselectiVity of nucleophilic attacks on such complexes.
Complexes
During these past five years, tremendous strides have been
made in the study of the reactivity of (η5-cyclohexadienyl)Mn-
(CO)3 complexes with the development of efficient synthetic
procedures such as Pd cross-coupling reactions5 and lithiation/
electrophilic quench sequence,6 thus giving rise to the formation
of unprecedented functionalized complexes. Among them the
η5 complexes substituted by synthetically useful keto groups
appeared to be of crucial importance in the development of
applications of such complexes.7 Starting from halogeno
substrates, we have synthesized several keto-substituted η5
complexes using Stille Pd coupling under carbonylative
conditions,5a but limitations concerning the presence of the
halide on the arene ring of the starting material, the experimental
conditions requiring a CO atmosphere, and the use of stannous
derivatives narrow the convenience of the method. As for the
lithiation/electrophilic quench sequence, only sterically demand-
ing electrophiles such as 2,2-dimethylpropionic acid chloride
were shown to react efficiently with the lithiated anion of η5
Mn complexes to give rise to the formation of the corresponding
keto-substituted (η5-cyclohexadienyl)Mn(CO)3 complexes in
high yield.6b All the other attempts using less bulky acid
chlorides (thienyl or phenyl acid chlorides, for example)8 led
to the formation of a mixture of unidentifiable products and a
significant quantity of unreacted starting material. We therefore
modified the nature of the electrophile and chose a Weinreb
amide.9 Indeed, to prevent further addition of the anion to the
Introduction
Transition metal complexes containing η6-arene ligands
constitute an important class of organometallic compounds
whose properties have been investigated for many years. Among
them, (η6-arene)tricarbonylchromium and isoelectronic cationic
(η6-arene)tricarbonylmanganese complexes1 present a decreased
electron density of the arene ring coordinated to the M(CO)3
entity and, consequently, a very high electrophilicity, which
found widespread applications in organic as well as in orga-
nometallic synthesis.2 In this context, cationic (η6-arenetricar-
bonyl)Mn(CO)3+ complexes and, in particular, the neutral (η5-
cyclohexadienyl)Mn(CO)3 derivatives formed by nucleophilic
addition to the arene ring have received considerable attention
because of their strategic importance in both fields.3 For
example, treatment of an η5 complex with a nucleophile Nu-
followed by oxidation results in the formation of highly
functionalized cis-disubstituted cyclohexadienes (Scheme 1, path
a),4a whereas its rearomatization occurs upon hydride abstraction
4b-d
by [CPh3][BF4] (Scheme 1, path b).
* To whom correspondence should be addressed. E-mail: francoise.rose@
upmc.fr; eric.rose@upmc.fr.
† Laboratoire de Chimie Organique.
‡ Laboratoire de Chimie The´orique.
(1) (a) McGlinchey, M. J.; Ortin, Y. Seward, C. M. ComprehensiVe
Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.;
Elsevier Science, Ltd.: Oxford, 2006; Vol. 5, p 201. (b) Sweigart, D. A.;
Reingold, J. A.; Son, S. U. ComprehensiVe Organometallic Chemistry III;
Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier Science, Ltd.: Oxford,
2006; Vol. 5, p 761.
(2) (a) McQuillin, F. J.; Parker, D. G.; Stephenson, G. R. Transition
Metal Organometallics for Organic Synthesis; Cambridge University Press:
Cambridge, U.K., 1991. (b) Djukic, J. P.; Rose-Munch, F.; Rose, E.
Organometallics 1995, 14, 2027. (c) Rose-Munch, F.; Gagliardini, V.;
Renard, C.; Rose, E Coord. Chem. ReV. 1998, 249, 178–180. (d) Pape,
A. R.; Kaliappan, K. P.; Ku¨ndig, E. P. Chem. ReV. 2000, 100, 2917. (e)
Giner Planas, J.; Prim, D.; Rose-Munch, F.; Rose, E.; Monchaud, D.; Lacour,
J. Organometallics 2001, 20, 4107. (f) Ku¨ndig, E. P. Topics in Organo-
metallic Chemistry; Springer: Berlin, 2004; Vol. 7. (g) Rosillo, M.;
Dom´ınguez, G.; Pe´rez-Castells, J. Chem. Soc. ReV. 2007, 36, 1589.
(3) For recent reviews, see (a) McDaniel, K. F. ComprehensiVe
Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G.,
Eds.; Pergamon Press: Oxford, U.K., 1995; Vol. 6, p 93. (b) Pike, R. D.;
Sweigart, D. A. Coord. Chem. ReV. 1999, 187, 183. (c) Rose-Munch, F.;
Rose, E. Eur. J. Inorg. Chem. 2002, 1269.
(4) See, for example, (a) Roell, B. C.; M; Daniel, K. F.; Vaughan, W. S.;
Macy, T. S Organometallics 1993, 12, 224. (b) Pearson, A. J.; Bruhn, P. R.
J. Org. Chem. 1991, 56, 7092. (c) Pearson, A. J.; Shin, H. Tetrahedron
1992, 48 (36), 7527. (d) Pearson, A. J.; Vickerman, R. J. Tetrahedron Lett.
1998, 39, 5931.
(5) (a) Auffrant, A.; Prim, D.; Rose-Munch, F.; Rose, E.; Schouteeten,
S.; Vaisserman, J. Organometallics 2003, 22, 1898. (b) Prim, D.; Andrioletti,
B.; Rose-Munch, F.; Rose, E.; Couty, F. Tetrahedron 2004, 60, 3325.
(6) (a) Jacques, B.; Chavarot, M.; Rose-Munch, F.; Rose, E. Angew.
Chem., Int. Ed. 2006, 45, 3481. (b) Jacques, B.; Chanaewa, A.; Chavarot-
Kerlidou, M.; Rose-Munch, F.; Rose, E.; Ge´rard, H. Organometallics 2008,
27, 626. (c) Jacques, B.; Eloi, A.; Chavarot-Kerlidou, M.; Rose-Munch,
F.; Rose, E.; Ge´rard, H.; Herson, P. Organometallics 2008, 27, 2505.
(7) Eloi, A.; Rose-Munch, F.; Rose, E.; Herson, P. Organometallics
2006, 25, 4554.
(8) Eloi, A.; Rose-Munch, F.; Rose, E. Unpublished results.
(9) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22 (39), 3815.
10.1021/om800863t CCC: $40.75
2009 American Chemical Society
Publication on Web 01/08/2009