Inorg. Chem. 2009, 48, 822-824
Multicomponent Assembly of Heterometallic Isosceles Triangles
Michael Schmittel* and Kingsuk Mahata
Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, UniVersita¨t Siegen,
Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
Received November 4, 2008
The multicomponent synthesis and solution-state characterization
of three supramolecular bis-heterometallic isosceles triangles are
elaborated. The triangular assemblies are isosceles both geo-
metrically and chemically; they comprise multiple ligands, metals,
and binding motifs. Variation of the length of one side of the triangle
by changing the number of phenyl spacers n ) 0, 1, and 2
influences the redox potential of the opposing copper(I) center,
allowing translation of the nanomechanical changes into electroni-
cally readable values.
The deficiencies and limitations of the presently used
metal-coordination toolkits are so pronounced that even the
clean preparation of a supramolecular triangle, formally the
simplest and smallest member of the two-dimensional family
of macrocycles, has been generating immense problems.
Typically, supramolecular triangles show up in equilibrium
with larger aggregates, such as squares or other polygons,7
so that only in very few cases exclusive formation of the
triangle was ascertained.8,9 Furthermore, the reported tri-
angles so far are usually homometallic as well as equilateral,
both geometrically and chemically (Figure 1a).10 In the
following, we will demonstrate that the until now unknown
geometrically and chemically isosceles supramolecular tri-
angles (Figure 1d) can be prepared in a clean heterometallic
form. This progress is a promising step toward the geo-
metrically and chemically scalene triangle (Figure 1e), the
holy grail of supramolecular triangles.
Over the last 2 decades, the design and fabrication of
supramolecular nanoarchitectures using self-assembly have
received considerable attention.1 Among the various non-
covalent binding tools to build intricate assemblies, metal
coordination has turned out to be one of the most successful
protocols. Even multifaceted construction algorithms can
easily be stored as information in the metal centers and
molecular components, allowing reliable readout of the
encoded instructions. Thus, metallosupramolecular ap-
proaches have been utilized to forge a large assortment of
fascinating two- and three-dimensional nanoarchitectures.1
The majority thereof, however, is comprised of only two
different components and a single binding motif. This
limitation suggests the need to explore ways to increase
complexity and diversity,2 particularly as higher-order mul-
ticomponent architectures2b using coordination-driven self-
assembly remain rare.3-6
To overcome the problems associated with angular com-
pression at acute angles, an increased challenge for geo-
(4) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S.-H.; Cave,
G. W. V.; Atwood, J. L.; Stoddart, J. F. Science 2004, 304, 1308.
(5) Christinat, N.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2008,
47, 1848.
(6) Kishore, R. S. K.; Paululat, T.; Schmittel, M. Chem.sEur. J. 2006,
12, 8136.
(7) (a) Sautter, A.; Schmid, D. G.; Jung, G.; Wu¨rthner, F. J. Am. Chem.
Soc. 2001, 123, 5424. (b) Kraus, T.; Budeˇsˇínsky´, M.; Cvacˇka, J.;
Sauvage, J.-P. Angew. Chem., Int. Ed. 2006, 45, 258. (c) Uehara, K.;
Kasai, K.; Mizuno, N. Inorg. Chem. 2007, 46, 2563. (d) Ferrer, M.;
Gutie´rrez, A.; Mounir, M.; Rossell, O.; Ruiz, E.; Rang, A.; Engeser,
M. Inorg. Chem. 2007, 46, 3395. (e) Champin, B.; Sartor, V.; Sauvage,
J.-P. New J. Chem. 2008, 32, 1048. (f) Sun, Q.-F.; Wong, K. M.-C.;
Liu, L.-X.; Huang, H.-P.; Yu, S.-Y.; Yam, V. W.-W.; Li, Y.-Z.; Pan,
Y.-J.; Yu, K.-C. Inorg. Chem. 2008, 47, 2142. (g) Coronado, E.; Galan-
Mascaros, J. R.; Gavin˜a, P.; Mart´ı-Gastaldo, C.; Romero, F. M.; Tatay,
S. Inorg. Chem. 2008, 47, 5197. (h) Weilandt, T.; Troff, R. W.; Saxell,
H.; Rissanen, K.; Schalley, C. A. Inorg. Chem. 2008, 47, 7588.
(8) (a) Kryschenko, Y. K.; Seidel, S. R.; Arif, A. M.; Stang, P. J. J. Am.
Chem. Soc. 2003, 125, 5193, and references cited therein. (b) Vicente,
J.; Chicote, M.-T.; Alvarez-Falco´n, M. M.; Jones, P. G. Chem.
Commun. 2004, 2658. (c) Cotton, F. A.; Murillo, C. A.; Wang, X.;
Yu, R. Inorg. Chem. 2004, 43, 8394. (d) Mimassi, L.; Guyard-
Duhayon, C.; Rager, M. N.; Amouri, H. Inorg. Chem. 2004, 43, 6644.
(e) Heo, J.; Jeon, Y.-M.; Mirkin, C. A. J. Am. Chem. Soc. 2007, 129,
7712. (f) Ghosh, S.; Turner, D. R.; Batten, S. R.; Mukherjee, P. S.
Dalton Trans. 2007, 1869. (g) Mukherjee, P.; Drew, M. G. B.; Estrader,
M.; Ghosh, A. Inorg. Chem. 2008, 47, 7784.
* To whom correspondence should be addressed. E-mail: schmittel@
chemie.uni-siegen.de.
(1) (a) Lehn, J.-M. Chem.sEur. J. 2000, 6, 2097. (b) Kovbasyuk, L.;
Kra¨mer, R. Chem. ReV. 2004, 104, 3161. (c) Drain, C. M.; Goldberg,
I.; Sylvain, I.; Falber, A. Top. Curr. Chem. 2005, 245, 55. (d) Fiedler,
D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res.
2005, 38, 351. (e) Schmittel, M.; Kalsani, V. Top. Curr. Chem. 2005,
245, 1. (f) Di Nicola, C.; Karabach, Y. Y.; Kirillov, A. M.; Monari,
M.; Pandolfo, L.; Pettinari, C.; Pombeiro, A. J. L. Inorg. Chem. 2007,
46, 221. (g) Nakabayashi, K.; Ozaki, Y.; Kawano, M.; Fujita, M.
Angew. Chem., Int. Ed. 2008, 47, 2046.
(2) (a) Yang, H.-B.; Ghosh, K.; Northrop, B. H.; Zheng, Y.-R.; Lyndon,
M. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2007, 129,
14187. (b) Schmittel, M.; Mahata, K. Angew. Chem., Int. Ed. 2008,
47, 5284.
(9) Schmittel, M.; Mahata, K. Chem. Commun. 2008, 2550.
(10) Definitions: a chemically equilateral triangle is a triangle with the same
ligand; a geometrically equilateral triangle is a triangle with sides of
the same length.
(3) Pentecost, C. D.; Chichak, K. S.; Peters, A. J.; Cave, G. W. V.; Cantrill,
S. J.; Stoddart, J. F. Angew. Chem., Int. Ed. 2007, 46, 218.
822 Inorganic Chemistry, Vol. 48, No. 3, 2009
10.1021/ic8021084 CCC: $40.75 2009 American Chemical Society
Published on Web 01/07/2009