3
Conclusion
20
10
0
In summary, we design and synthesize a new AlQ3 derivative,
Al(4CAQ)3, which has a quasi-spherical octahedral 3D structure
and exhibits good thermal stability. The introduction of electron-
withdrawing 2-ethylhexyl cyanoacrylate to the C-4 of quinoline
ring enables Al(4CAQ)3 with excellent solubility and appropriate
LUMO energy level to pair with donors in OSCs. In addition,
Al(4CAQ)3 has better UV-visible absorptions than PC61BM.
Therefore, Al(4CAQ)3 may be a promising non-fullerene
acceptor for solution-processed OSCs.
-10
Acknowledgments
The authors would like to gratefully acknowledge the
financial support from the National Natural Science Foundation
of China (No. 21474088) and the Zhejiang Province Natural
Science Foundation (No. LR13E030001). This work is also
supported by the Joint NSFC-ISF Research Program, jointly
funded by the National Natural Science Foundation of China and
the Israel Science Foundation (No. 51561145001).
-20
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
Potential (V, vs. SCE)
Figure 2. Cyclic voltammogram of Al(4CAQ)3 in CH2Cl2 soution.
Supplementary Material
Al(4CAQ) -solution
3
1.0
0.8
0.6
0.4
0.2
0.0
Al(4CAQ) -thin film
3
PC BM-solution
61
PC BM-thin film
61
Supplementary data (the experimental section, TGA and DSC
curves of Al(4CAQ)3, scanned NMR spectra and mass spectra)
associated with this article can be found, in the online version.
References and notes
1
2
3
4
Kaltenbrunner, M.; White, M. S.; Glowacki, E. D.; Sekitani, T.;
Someya, T.; Sariciftci, N. S.; Bauer, S. Nat. Commun. 2012, 3.
770.
Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.;
Jiang, K.; Lin, H. R.; Ade, H.; Yan, H. Nat. Commun. 2014, 5.
5293.
Kan, B.; Zhang, Q.; Li, M. M.; Wan, X. J.; Ni, W.; Long, G. K.;
Wang, Y. C.; Yang, X.; Feng, H. R.; Chen, Y. S. J. Am. Chem.
Soc. 2014, 136, 15529.
Liu, Y. H.; Lai, J. Y. L.; Chen, S. S.; Li, Y. K.; Jiang, K.; Zhao,
J. B.; Li, Z. K.; Hu, H. W.; Ma, T. X.; Lin, H. R.; Liu, J.;
Zhang, J.; Huang, F.; Yu, D. M.; Yan, H. J. Mater. Chem. A
2015, 3, 13632.
200
300
400
500
600
700
800
900
Wavelength (nm)
Figure 3. UV-vis absorption spectra of Al(4CAQ)3 and PC61BM
in CH2Cl2 solutions and thin films. Insets are the photographs of
Al(4CAQ)3 (left) and PC61BM (right) in CH2Cl2 solutions (upper)
and thin films (down).
5
6
Lin, Y. Z.; Wang, J. Y.; Zhang, Z. G.; Bai, H. T.; Li, Y. F.; Zhu,
D. B.; Zhan, X. W. Adv. Mater. 2015, 27, 1170.
Liu, Y. H.; Mu, C.; Jiang, K.; Zhao, J. B.; Li, Y. K.; Zhang, L.;
Li, Z. K.; Lai, J. Y. L.; Hu, H. W.; Ma, T. X.; Hu, R. R.; Yu, D.
M.; Huang, X. H.; Tang, B. Z.; Yan, H. Adv. Mater. 2015, 27,
1015.
Hartnett, P. E.; Timalsina, A.; Matte, H. S. S. R.; Zhou, N. J.;
Guo, X. G.; Zhao, W.; Facchetti, A.; Chang, R. P. H.; Hersam,
M. C.; Wasielewski, M. R.; Marks, T. J. J. Am. Chem. Soc.
2014, 136, 16345.
Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Rohr, J.
A.; Tan, C. H.; Collado-Fregoso, E.; Knall, A. C.; Durrant, J.
R.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 898.
Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T.-K.; Wan, J.; Lu, X.; Li,
C.-Z.; Chen, H. Energ. Environ. Sci. 2016, 9, 604.
Cyclic voltammetry (CV) measurements are performed to
characterize the energy levels of Al(4CAQ)3. From the onset
oxidation potential (1.01 V versus SCE) and the onset reduction
potential (-0.70 V versus SCE) presented in Fig. 2, the highest
occupied molecular orbital (HOMO) and LUMO energy levels of
Al(4CAQ)3 are obtained as -5.41 and -3.70 eV, respectively.
Compared to the parent molecule AlQ3, the LUMO energy level
of Al(4CAQ)3 is lowered tremulously by 0.70 eV. It is ascribed
mainly to the inductive effect of the electronegative cyano and
ester groups, thus it can match donors used in OSCs.
Additionally, the HOMO energy level of Al(4CAQ)3 is 0.29 eV
higher than that of AlQ3 (-5.7 eV),15 which can be attributed to
the conjugation effect of 2-ethylhexyl cyanoacrylate with
quinoline ring. The narrowed band gap of Al(4CAQ)3 would
help improve the light-harvesting capability if it is applied as
electron acceptor in OSCs. Fig. 3 depicts UV-vis absorption
spectra of Al(4CAQ)3 in solution and film. It is interesting to see
that, the absorptions of Al(4CAQ)3 has been extended to visible
range when compared to those of AlQ3.16 And the absorptions of
Al(4CAQ)3 are also much stronger and broader than PC61BM.
From the absorption band-edge (λonset) at 686 nm, the optical band
gap (Egopt) of Al(4CAQ)3 is calculated as 1.81 eV, which is in
agreement with the value gotten from CV measurements. These
results demonstrate the rationality of our molecular design.
7
8
9
10 Liu, S.-Y.; Wu, C.-H.; Li, C.-Z.; Liu, S.-Q.; Wei, K.-H.; Chen,
H.-Z.; Jen, A. K. Y. Adv. Sci. 2015, 2, 1500014.
11 Senevirathna, W.; Sauve, G. J. Mater. Chem. C 2013, 1, 6684.
12 Mao, Z. H.; Senevirathna, W.; Liao, J. Y.; Gu, J.; Kesava, S. V.;
Guo, C. H.; Gomez, E. D.; Sauve, G. Adv. Mater. 2014, 26,
6290.
13 Hosokawa, C.; Tokailin, H.; Higashi, H.; Kusumoto, T. Appl.
Phys. Lett. 1992, 60, 1220.
14 Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
15 Xin, H.; Guang, M.; Li, F. Y.; Bian, Z. Q.; Huang, C. H.;
Ibrahim, K.; Liu, F. Q. Phys. Chem. Chem. Phys. 2002, 4, 5895.
16 Shi, Y.-W.; Shi, M.-M.; Huang, J.-C.; Chen, H.-Z.; Wang, M.;
Liu, X.-D.; Ma, Y.-G.; Xu, H.; Yang, B. Chem. Commun. 2006,
1941.