well in noncompetitive solvents but fail in protic solvents due
to the severe interference of protic media with the hydrogen
bonding receptor. In order to develop chiral fluorescent chemosen-
sors that are effective in aqueous media, especially toward
R-hydroxyl acids, which are bioactive or versatile chiral building
blocks, boronic acid based fluorescent sensors have been
designed and some of these sensors display tight binding toward
sugars or polyhydroxyl acids, such as glucose, tartaric acid,
mandelic acid or glucarate, etc.9-16
3,6-Disubstituted Carbazole-Based Bisboronic
Acids with Unusual Fluorescence Transduction as
Enantioselective Fluorescent Chemosensors for
Tartaric Acid
Feng Han,† Lina Chi,† Xiaofen Liang,† Shaomin Ji,†
Shasha Liu,‡ Fuke Zhou,† Yubo Wu,† Keli Han,§
Jianzhang Zhao,*,† and Tony D. James*,¶
We previously reported a BINOL-based boronic acid sensor
with a unique signal transduction profile where the fluorescence
intensity of the sensor is either enhanced or diminished with
the two enantiomers of tartaric acid.13 Anthracene-based sensors
were also prepared and show very high binding constants and
enantioselectivity toward tartaric acid (e.g., 6 in Scheme 1).14,15
Recently, we designed a new BINOL boronic acid, which is
enantioselective on sorbitol, but the sensor failed to show
fluorescence enhancement/diminishment toward tartaric acids.16
Herein we report new chiral boronic acid sensor 3 (Scheme
1), based on 3,6-disubstituted carbazole, that shows high
enantioselectivity toward tartaric acids and, surprisingly, a
reverse fluorescence intensity-pH relationship14,15 (i.e., dimin-
ished fluorescence intensity at acidic pH but stronger emission
at basic pH).9,10 Furthermore, fluorescence enhancement/
State Key Laboratory of Fine Chemicals, School of Chemical
Engineering, School of Physics and Optoelectronic
Technology, Dalian UniVersity of Technology,
158 Zhongshan Road, Dalian 116012, People’s Republic of
China, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, 457 Zhongshan Road, Dalian 116023, People’s
Republic of China, and Department of Chemistry, UniVersity of
Bath, Bath BA2 7AY, U.K.
zhaojzh@dlut.edu.cn; t.d.james@bath.ac.uk
ReceiVed April 14, 2008
(2) (a) Pu, L. Chem. ReV. 1998, 98, 2405. (b) Pu, L. Chem. ReV. 2004, 104,
1687. (c) Willener, Y.; Joly, K. M.; Moody, C. J.; Tucker, J. H. R. J. Org.
Chem. 2008, 73, 1225. (d) Liu, S.; Pestano, J. P. C.; Wolf, C. J. Org. Chem.
2008, 73, 4267. (e) Mei, X.; Wolf, C. Tetrahedron Lett. 2006, 47, 7901. (f)
Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord.
Chem. ReV. 2006, 250, 3094. (g) Duke, R. M.; Gunnlaugsson, T. Tetrahedron
Lett. 2007, 48, 8043. (h) dos Santos, C. M. G.; McCabe, T.; Gunnlaugsson, T.
Tetrahedron Lett. 2007, 48, 3135.
(3) (a) Lin, J.; Rajaram, A. R.; Pu, L. Tetrahedron 2004, 60, 11277. (b) Li,
Z.-B.; Lin, J.; Pu, L. Angew. Chem., Int. Ed. 2005, 44, 1690. (c) Li, Z.-B.; Lin,
J.; Sabat, M.; Hyacinth, M.; Pu, L. J. Org. Chem. 2007, 72, 4905.
(4) Alfonso, I.; Rebolledo, F.; Gotor, V. Chem.sEur. J. 2000, 6, 3331.
(5) Alfonso, I.; Dietrich, B.; Rebolledo, F.; Gotor, V.; Lehn, J.-M. HelV.
Chim. Acta 2001, 84, 280.
(6) (a) Xu, K.-X.; He, Y.-B.; Qin, H.-J.; Qing, G.-Y.; Liu, S.-Y. Tetrahedron:
Asymmetry 2005, 16, 3042. (b) Qin, H.; He, Y. B.; Hu, C.; Chen, Z.; Hu, L.
Tetrahedron: Asymmetry 2007, 18, 1769.
(7) Herna´ndez, J. V.; Almaraz, M.; Raposo, C.; Mart´ın, M.; Lithgow, A.;
Crego, M.; Caballero, C.; Mora´n, J. R. Tetrahedron 2007, 18, 1769.
(8) (a) Li, C.; Wang, G.-T.; Yi, H.-P.; Jiang, X.-K.; Li, Z.-T.; Wang, R.-X.
Org. Lett. 2007, 9, 1797. (b) Ghosh, K.; Adhikari, S. Tetrahedron Lett. 2006,
47, 3577.
Carbazole-based bisboronic acids were found to be enanti-
oselective fluorescent sensors for tartaric acid. The fluores-
cence response toward the enantiomers of tartaric acid at
neutral pH displayed enhancement/diminishment. The sensor
displays an unusual fluorescence intensity-pH relationship
with diminished emission at acidic pH but enhanced emission
at basic pH. Photoinduced electron transfer (PET) from the
fluorophore to the protonated amine/phenylboronic acid unit
is proposed to be responsible for this effect, which is
rationalized by density functional theory (DFT) calculations.
(9) James, T. D.; Shinkai, S. Top. Curr. Chem. 2002, 218, 159.
(10) James, T. D. Top. Curr. Chem. 2007, 277, 107.
(11) Mohr, G. J. Anal. Bioanal. Chem. 2006, 386, 1201.
(12) (a) Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc.
Chem. Res. 2001, 34, 963. (b) Lavigne, J. J.; Anslyn, E. V. Angew. Chem., Int.
Ed. 1999, 38, 3666. (c) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004, 126,
3676. (d) Cordes, D. B.; Gamsey, S.; Singaram, B. Angew. Chem., Int. Ed. 2006,
45, 3829. (e) He, M.; Johnson, R. J.; Escobedo, J. O.; Beck, P. A.; Kim, K. K.;
St. Luce, N. N.; Davis, C. J.; Lewis, P. T.; Fronczek, F. R.; Melancon, B. J.;
Mrse, A. A.; Treleaven, W. D.; Strongin, R. M. J. Am. Chem. Soc. 2002, 124,
5000. (f) Jiang, S.; Escobedo, J. O.; Kim, K. K.; Alptu¨rk, O.; Samoei, G. K.;
Fakayode, S. O.; Warner, I. M.; Rusin, O.; Strongin, R. M. J. Am. Chem. Soc.
2006, 128, 12221. (g) Ni, W.; Fang, H.; Springsteen, G.; Wang, B. J. Org. Chem.
2004, 69, 1999. (h) Gao, X.; Zhang, Y.; Wang, B. Org. Lett. 2003, 5, 4615. (i)
DiCesare, N.; Lakowicz, J. R. Tetrahedron Lett. 2001, 42, 9105. (j) DiCesare,
N.; Lakowicz, J. R. J. Phys. Chem. A 2001, 105, 6834.
(13) Zhao, J.; Fyles, T. M.; James, T. D. Angew. Chem., Int. Ed. 2004, 43,
3461.
(14) (a) Zhao, J.; Davidson, M. G.; Mahon, M. F.; Kociok-Ko¨hn, G.; James,
T. D. J. Am. Chem. Soc. 2004, 126, 16179. (b) Zhao, J.; James, T. D. Chem.
Commun. 2005, 1889.
(15) Chi, L.; Zhao, J.; James, T. D. J. Org. Chem. 2008, 73, 4684.
(16) Liang, X.; James, T. D.; Zhao, J. Tetrahedron 2008, 64, 1309.
Synthetic receptors and fluorescent chemosensors for enan-
tioselective recognition of chiral compounds, such as chiral
R-hydroxyl carboxylic acids, are a subject of increasing
interest.1-8 The majority of these chiral fluorescent sensors are
based on hydrogen bonding interactions.2-6 These systems work
† State Key Laboratory of Fine Chemicals, School of Chemical Engineering,
Dalian University of Technology.
‡ School of Physics and Optoelectronic Technology, Dalian University of
Technology.
§ Dalian Institute of Chemical Physics.
¶ University of Bath.
(1) Stibor, I.; Zlatusˇkova´, P. Top. Curr. Chem. 2005, 255, 31.
10.1021/jo8025669 CCC: $40.75
Published on Web 01/14/2009
2009 American Chemical Society
J. Org. Chem. 2009, 74, 1333–1336 1333